Skip to main content
Log in

Supramer analysis of 2,3,5-tri-O-benzoyl-α-d-arabinofuranosyl bromide solutions in different solvents: supramolecular aggregation of solute molecules in 1,2-dichloroethane mediated by halogen bonds

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Supramer analysis was applied to explain the earlier discovered phenomenon of the transformation of nonselective glycosylation into stereospecific one upon changing the glycosyl donor concentration. The supramer analysis is a part of the supramer approach being developed by us and makes it possible to find concentration ranges separated by “critical” concentrations at which supramolecular aggregates (supramers) have different structures. As a result, the “critical” concentration for solutions of 2,3,5-tri-O-benzoyl-α-d-arabinofuranosyl bromide (1) in acetonitrile was found by polarimetry, and that for solutions of glycosyl bromide 1 in 1,2-dichloroethane (DCE) was found using static light scattering. The presence of nanosized supramers in solutions of 1 in acetonitrile and nano- and mesoscale supramers in solutions of 1 in DCE was demonstrated using dynamic light scattering. An analysis of the obtained experimental and earlier published data suggested a possibility of both formation of halogen bonds involving DCE molecules and halogen bond-mediated supramolecular aggregation of molecules of the dissolved substance in this solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Ahiadorme, N. M. Podvalnyy, A. V. Orlova, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2016, 65, 2776–2778; DOI: https://doi.org/10.1007/s11172-016-1654-y.

    Article  CAS  Google Scholar 

  2. L. O. Kononov, K. G. Fedina, A. V. Orlova, N. N. Kondakov, P. I. Abronina, N. M. Podvalnyy, A. O. Chizhov, Carbohydr. Res., 2017, 437, 28–35; DOI: https://doi.org/10.1016/j.carres.2016.11.009.

    Article  CAS  Google Scholar 

  3. M. O. Nagornaya, A. V. Orlova, E. V. Stepanova, A. I. Zinin, T. V. Laptinskaya, L. O. Kononov, Carbohydr. Res., 2018, 470, 27–35; DOI: https://doi.org/10.1016/j.carres.2018.10.001.

    Article  CAS  Google Scholar 

  4. A. V. Orlova, T. V. Laptinskaya, N. N. Malysheva, L. O. Kononov, J. Solution Chem., 2020, 49, 629–644; DOI: https://doi.org/10.1007/s10953-020-00977-1.

    Article  CAS  Google Scholar 

  5. L. O. Kononov, RSC Adv., 2015, 5, 46718–46734; DOI: https://doi.org/10.1039/c4ra17257d.

    Article  CAS  Google Scholar 

  6. L. O. Kononov, D. E. Tsvetkov, A. V. Orlova, Russ. Chem. Bull., 2002, 51, 1337–1338; DOI: https://doi.org/10.1023/a:1020981320040.

    Article  CAS  Google Scholar 

  7. L. O. Kononov, N. N. Malysheva, E. G. Kononova, A. V. Orlova, Eur. J. Org. Chem., 2008, 3251–3255; DOI: https://doi.org/10.1002/ejoc.200800324.

  8. L. O. Kononov, N. N. Malysheva, A. V. Orlova, A. I. Zinin, T. V. Laptinskaya, E. G. Kononova, N. G. Kolotyrkina, Eur. J. Org. Chem., 2012, 1926–1934; DOI: https://doi.org/10.1002/ejoc.201101613.

  9. A. V. Orlova, R. R. Andrade, C. O. da Silva, A. I. Zinin, L. O. Kononov, ChemPhysChem, 2014, 15, 195–207; DOI: https://doi.org/10.1002/cphc.201300894.

    Article  CAS  Google Scholar 

  10. A. V. Orlova, A. I. Zinin, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 295–297; DOI: https://doi.org/10.1007/s11172-014-0429-6.

    Article  CAS  Google Scholar 

  11. A. V. Orlova, L. O. Kononov, RENSIT, 2020, 12, 95–106; DOI: https://doi.org/10.17725/rensit.2020.12.095.

    Article  Google Scholar 

  12. A. V. Orlova, T. V. Laptinskaya, N. V. Bovin, L. O. Kononov, Russ. Chem. Bull., 2017, 66, 2173–2179; DOI: https://doi.org/10.1007/s11172-017-1999-x.

    Article  CAS  Google Scholar 

  13. A. V. Orlova, T. V. Laptinskaya, L. O. Kononov, Russ. Chem. Bull., 2019, 68, 1462–1464; DOI: https://doi.org/10.1007/s11172-019-2580-6.

    Article  CAS  Google Scholar 

  14. M. Sedlák, J. Phys. Chem. B, 2006, 110, 13976–13984; DOI: https://doi.org/10.1021/jp061919t.

    Article  Google Scholar 

  15. D. Rak, M. Sedlák, J. Phys. Chem. B, 2019, 123, 1365–1374; DOI: https://doi.org/10.1021/acs.jpcb.8b10638.

    Article  CAS  Google Scholar 

  16. P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys., 2010, 12, 7748–7757; DOI: https://doi.org/10.1039/c004189k.

    Article  CAS  Google Scholar 

  17. P. Politzer, J. S. Murray, ChemPhysChem, 2013, 14, 278–294; DOI: https://doi.org/10.1002/cphc.201200799.

    Article  CAS  Google Scholar 

  18. G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev., 2016, 116, 2478–2601; DOI: https://doi.org/10.1021/acs.chemrev.5b00484.

    Article  CAS  Google Scholar 

  19. T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model., 2007, 13, 291–296; DOI: https://doi.org/10.1007/s00894-006-0130-2.

    Article  CAS  Google Scholar 

  20. G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo, Cryst. Growth Des., 2014, 14, 2697–2702; DOI: https://doi.org/10.1021/cg5001717.

    Article  CAS  Google Scholar 

  21. P. Politzer, J. S. Murray, T. Clark, Top. Curr. Chem., 2015, 358, 19–42; DOI: https://doi.org/10.1007/128_2014_568.

    Article  CAS  Google Scholar 

  22. A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem, 2015, 16, 2496–2517; DOI: https://doi.org/10.1002/cphc.201500314.

    Article  Google Scholar 

  23. H. Wang, W. Wang, W. J. Jin, Chem. Rev., 2016, 116, 5072–5104; DOI: https://doi.org/10.1021/acs.chemrev.5b00527.

    Article  CAS  Google Scholar 

  24. K. E. Riley, P. Hobza, J. Chem. Theory Comput., 2008, 4, 232–242; DOI: https://doi.org/10.1021/ct700216w.

    Article  CAS  Google Scholar 

  25. T. Clark, P. Politzer, J. S. Murray, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5, 169–177; DOI: https://doi.org/10.1002/wcms.1210.

    Article  CAS  Google Scholar 

  26. P. Politzer, J. S. Murray, T. Clark, J. Mol. Model., 2015, 21, 52; DOI: https://doi.org/10.1007/s00894-015-2585-5.

    Article  Google Scholar 

  27. J. Zurita, V. Rodriguez, C. Zambrano, J. R. Mora, L. Rincón, F. J. Torres, Molecules, 2020, 25, 530; DOI: https://doi.org/10.3390/molecules25030530.

    Article  Google Scholar 

  28. J.-W. Zou, Y.-J. Jiang, M. Guo, G.-X. Hu, B. Zhang, H.-C. Liu, Q.-S. Yu, Chem. Eur. J., 2005, 11, 740–751; DOI: https://doi.org/10.1002/chem.200400504.

    Article  CAS  Google Scholar 

  29. P. Politzer, P. Lane, M. C. Concha, Y. Ma, J. S. Murray, J. Mol. Model., 2007, 13, 305–311; DOI: https://doi.org/10.1007/s00894-006-0154-7.

    Article  CAS  Google Scholar 

  30. A. Bundhun, P. Ramasami, J. S. Murray, P. Politzer, J. Mol. Model., 2013, 19, 2739–2746; DOI: https://doi.org/10.1007/s00894-012-1571-4.

    Article  CAS  Google Scholar 

  31. K. Eskandari, H. Zariny, Chem. Phys. Lett., 2010, 492, 9–13; DOI: https://doi.org/10.1016/j.cplett.2010.04.021.

    Article  CAS  Google Scholar 

  32. W. Kunz, K. Holmberg, T. Zemb, Curr. Opin. Colloid Interface Sci., 2016, 22, 99–107; DOI: https://doi.org/10.1016/j.cocis.2016.03.005.

    Article  CAS  Google Scholar 

  33. T. Buchecker, S. Krickl, R. Winkler, I. Grillo, P. Bauduin, D. Touraud, A. Pfitzner, W. Kunz, Phys. Chem. Chem. Phys., 2017, 19, 1806–1816; DOI: https://doi.org/10.1039/c6cp06696h.

    Article  CAS  Google Scholar 

  34. R. K. Ness, H. G. Fletcher, Jr., J. Am. Chem. Soc., 1958, 80, 2007–2010; DOI: https://doi.org/10.1021/ja01541a058.

    Article  CAS  Google Scholar 

  35. N. M. Podvalnyy, A. I. Zinin, B. Venkateswara Rao, L. O. Kononov, in Carbohydrate Chemistry: Proven Synthetic Methods, Eds R. Roy, S. Vidal, CRC Press-Taylor & Francis Group, Boca Raton, FL, 2015, Vol. 3, pp. 147–154.

  36. W. L. F. Armarego, Purification of Laboratory Chemicals, 8th ed., Butterworth-Heinemann, Oxford, 2017, 1198 pp.

    Google Scholar 

  37. W. Schärtl, Light Scattering from Polymer Solutions and Nanoparticle Dispersions, 1st ed., Springer-Verlag, Berlin—Heidelberg, 2007, 191 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Kononov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2214–2219, November, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, A.V., Ahiadorme, D.A., Laptinskaya, T.V. et al. Supramer analysis of 2,3,5-tri-O-benzoyl-α-d-arabinofuranosyl bromide solutions in different solvents: supramolecular aggregation of solute molecules in 1,2-dichloroethane mediated by halogen bonds. Russ Chem Bull 70, 2214–2219 (2021). https://doi.org/10.1007/s11172-021-3335-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3335-8

Key words

Navigation