Skip to main content

Advertisement

Log in

Initial Characterization of Colombian High School Physics Teachers’ Pedagogical Content Knowledge on Electric Fields

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

We explore the initial characterization of the pedagogical content knowledge of four, in-service, Colombian pre-university secondary education physics teachers on the concept of electric field. Two of them teach the content in English as a second language. The aim of the study was to obtain an image of the participants’ teaching of electric field and the inherent complexities that go with that. The results revealed that factors which involved their personal educational models, such as, how they interpret their school’s curriculum, the relationship they see between physics and mathematics, the most effective strategies for teaching physics, and the time they have available to develop the topic played a significant role. The teachers considered it essential to establish new strategies that would motivate the pupils by helping them visualize the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abell, S., & Lederman, N. (2007). Preface. In S. K. Abell & N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. ix–xiii). New Jersey: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Alonzo, A. C., Kobarg, M., & Seidel, T. (2012). Pedagogical content knowledge as reflected in teacher-student interactions: analysis of two video cases. Journal of Research in Science Teaching, 49(10), 1211–1239.

    Article  Google Scholar 

  • Berkson, W. (1985). Las teorías de los campos de fuerza. Desde Faraday hasta Eisntein (pp. 20–30). Madrid: Alianza Editorial (Fields of Force. The Development of a World View from Faraday to Einstein).

    Google Scholar 

  • Bilal, E., & Eron, M. (2009). Investigatigation students’ conceptions of some electricity concepts. Latin American Journal of Physics, 3(2), 193–201.

    Google Scholar 

  • Bohigas, X., & Periago, C. (2010). Modelos mentales alternativos de los alumnos de segundo curso de ingeniería sobre la Ley de Coulomb y el Campo Eléctrico. Revista Electrónica de Investigación Educativa, 12 (1). http://redie.uabc.mx/vol12no1/contenido-bohigas.html. Accessed 5 May 2011 (Alternative mental models of second-year engineering students of Coulomb’s Law and the Electric Field.).

  • Bonham, S., Risley, J., & Christian, W. (1999). Using Physlets to teach electrostatics. The Physics Teacher, 57, 276–281.

    Article  Google Scholar 

  • Bradamante, F., Michelini, M., & Stefanel, A. (2006). Learning problems related to the concept of field. In B. G. Sidharth, F. Honsell, & A. de Angelis (Eds.), Frontiers of Fundamental Physics (pp. 367–379). Netherlands: Springer.

    Chapter  Google Scholar 

  • Brown, P. (2008). Investigating teacher knowledge of learners and learning and sequence of science instruction in an alternative certification program. Columbia: University of Missouri. Unpublished doctoral dissertation.

    Google Scholar 

  • Brown, P., Friedrichsen, P., & Abell, S. (2012). The development of prospective secondary biology teachers PCK. Journal of Science Teacher Education, 24(1), 133–155.

    Article  Google Scholar 

  • Caillods, F., Gottelmann-Duret, G., & Lewin, K. (1997). Science Educational Developmen. Paris: Pergamon.

  • Etkina, E. (2010). Pedagogical content knowledge and preparation of high school physics teachers. Physical Review Special Topics - Physics Education Research, 6(2), 010108.

    Article  Google Scholar 

  • Freitas, M. I., Jiménez, R., & Mellado, V. (2004). Solving physics problems: the conceptions and practice of an experienced teacher and an inexperienced teacher. Research in Science Education, 34(1), 113–133.

    Article  Google Scholar 

  • Friedrichsen, P., Abell, S., Pareja, E., & Brown, P. (2009). Does teaching experience matter? Examining biology teachers prior knowledge for teaching in an alternative certification program. Journal of Research in Science Teaching, 46(4), 357–383.

    Article  Google Scholar 

  • Friedrichsen, P., Van Driel, J., & Abell, S. (2011). Taking a closer look at science teaching orientation. Science Education, 95(2), 358–376.

    Article  Google Scholar 

  • Furió, C., & Guisasola, J. (1998). Dificultades del aprendizaje de los conceptos de carga y de campo eléctrico en estudiantes de bachillerato y universidad. Enseñanza de las Ciencias, 16(1), 131–146. (Difficulty in learning the concepts of charge and of electric field in pre-university and university students).

    Google Scholar 

  • Furió, C., & Guisasola, J. (2001). La enseñanza del Concepto de Campo Eléctrico basada en un modelo de aprendizaje como investigación orientado. Enseñanza de las Ciencias, 19(2), 319–334. (The teaching of the concept of the electric field based on a research oriented model of learning).

    Google Scholar 

  • Garritz, A. (2010). Pedagogical content knowledge and the affective domain of scholarship of teaching and learning. International Journal for the scholarship of Teaching and Learning, 4(2), 1–6.

    Article  Google Scholar 

  • Garritz, A. (2014). ¿Qué es el CDC? ¿Cuáles son sus elementos fundamentales?. In A. Garrtiz, Daza, S., & Lorenzo, M. G. (Eds.), Conocimiento Didáctico del Contenido. Una perspectiva Iberoamericana (Review of the book Pedagogical Content Knowledge. An Ibero-American Perspective) (pp. 24–34). Saarbrücke: Editorial Académica Española.

  • Garritz, A., Nieto, E., Padilla, K., Reyes, F., & Trinidad, R. (2008). Conocimiento didáctico del contenido en química. Lo que todo profesor debería poseer. Campo Abierto, 27(1), 153–177. (Pedagogical content knowledge in chemistry. What every teacher should possess).

  • Garza, A., & Zabala, G. (2010) Electric field concept: effect of the context and the type of questions. Physics education research conference, AIP Conf. Proc. (1289), 145-148 Portland, (Oregon) 21–22 July 2010.

  • Gess-Newsome, J. (1999). Pedagogical content knowledge: an introduction and orientation. In J. Gess-Newsome & N. Lederman (Eds.), Examining pedagogical content knowledge (pp. 3–17). Dordrecht: Kluwer A.P.

    Google Scholar 

  • Guisasola, J., Salinas, J., Almudí, J. M., & Velazco, S. (2003). Análisis de los Procesos de Aplicación de las Leyes de Gauss y Ampere por Estudiantes Universitarios de España y Argentina. Revista Brasileira de Ensino de Física, 25(2), 195–206.

    Google Scholar 

  • Guisasola, J., Zubimendi, J., & Zuza, K. (2010). How much have students learned? Research-based teaching on electrical capacitance. Physical Review Special Topic-Physics Education Research, 6(2), 020102.

    Article  Google Scholar 

  • Halim, L., & Meerah, S. M. (2002). Science trainee teachers’ pedagogical content knowledge and its in uence on physics teaching. Research in Science & Technological Education, 20(2), 215-225.

  • Halim, L., Dahlan, F., Treagust, D., & Chandrasegaran, A. (2012). Experiences of teaching the heat energy topic in English as a second language. Science Education International, 23(2), 117–132.

  • Henze, I., Van Driel, J., & Verloop, N. (2008). Development of experienced science teachers’ pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30(10), 1321–1342.

    Article  Google Scholar 

  • Jang, S.-J. (2011). Assessing college students’ perceptions of a case teacher’s pedagogical content knowledge using a newly developed instrument. Higher Education, 61(6), 663–678.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (2000). Modelos Didácticos. In F. J. Perales & P. Cañal (Eds.), Didáctica de las Ciencias Experimentales. Teoría y práctica de la enseñanza de las Ciencias (pp. 165–186). Spain: Ed. Marfil. Alcoy.

    Google Scholar 

  • Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169–204.

    Article  Google Scholar 

  • Lee, E., & Luft, J. A. (2008). Experienced secondary science teachers’ representation of peda- gogical content knowledge. International Journal of Science Education, 30, 1343–1363.

    Article  Google Scholar 

  • Llancaqueo, A., Caballero, C., & Morerira, M. (2010). Conceptualización del concepto de campo electromagnético en un curso de física. In M. C. Caballero, Moreira, M.A., & Meneses, J. (coords.) III Encuentro internacional sobre investigación en enseñanza en ciencias (pp. 95–110). Burgos: Universidad de Burgos, Servicio de Publicaciones.

  • Loughran, J., Berry, A., & Mulhall, P. (Eds.). (2006). Understanding and developing science teachers’ pedagogical content knowledge. Rotterdam: Sense Publishers.

    Google Scholar 

  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370–391.

    Article  Google Scholar 

  • Luft, J. A. (2009). Beginning secondary science teachers in different induction programmes: the first year of teaching. International Journal of Science Education, 31(17), 2355–2384.

    Article  Google Scholar 

  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of the PCK for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht: Kluwer A.P.

    Google Scholar 

  • Martín del Pozo, R., & Rivero, A. (2001). Construyendo Conocimiento Profesionalizado para Enseñar Ciencia en la Educación Secundaria: Los ámbitos de Investigación Profesional en la formación Inicial del Profesorado. Revista Interuniversitaria de Formación del Profesorado, 40, 63-79 . (Building professionalized knowledge for teaching science in secondary education: Professional research areas in initial teacher training).

  • Martín, J., & Solbes, J. (2001). Diseño y Evaluación de una propuesta para la enseñanza del concepto campo en física. Enseñanza de las Ciencias, 19(3), 393–403. (Design and evaluation of a proposal for teaching the concept of field in physics).

    Google Scholar 

  • Mellado, V., Borrachero, A. B., Brígido, M., Melo, L. V., Dávila, M. A., Cañada, F., Conde, M. C., Costillo, E., Cubero, J., Esteban, R., Martínez, G., Ruiz, C., Sánchez, J., Garritz, A., Mellado, L., Vázquez, B., Jiménez, R., & Bermejo, M. L. (2014). Las emociones en la enseñanza de las ciencias. Enseñanza de las Ciencias, 32(3), 11–36.

    Google Scholar 

  • Mellado, V., Ruiz, C., Bermejo, M. L., & Jiménez, R. (2006). Contributions from the philosophy of science to the education of science teachers. Science & Education, 15(5), 419–445.

    Article  Google Scholar 

  • Nilsson, P. (2008). Teaching for understanding: the complex nature of pedagogical content knowledge in pre-service education. International Journal of Science Education, 30(10), 1281–1299.

    Article  Google Scholar 

  • Nivalainen, V., Asikainen, M. A., Sormunen, K., & Hirvonen, P. E. (2010). Preservice and inservice teachers’ challenges in the planning of practical work in physics. Journal of Science Teacher Education, 21(4), 393–409.

    Article  Google Scholar 

  • Orleans, A. V. (2010). Enhancing teacher competence through online training. The Asia-Pacific Education Researcher, 3, 371–386.

  • Ouma, S. (2012). Language in science classrooms: an analysis of physics teachers’ use of and beliefs about language. Research in Science Education, 42(5), 849–873.

    Article  Google Scholar 

  • Park, S., Jang, J.-Y., Chen, Y.-C., & Hung, J. (2011). Is pedagogical content knowledge (PCK) necessary for reformed science teaching? Evidence from an empirical study. Research in Science Education, 41(2), 245–260.

    Article  Google Scholar 

  • Park, S., & Oliver, S. (2008a). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.

    Article  Google Scholar 

  • Park, J., & Oliver, S. (2008b). National Board Certification (NBC) as a catalyst for teachers’ learning about teaching: the effects of the NBC process on candidate teachers’ PCK development. Journal of Research in Science Teaching, 45(7), 812–834.

    Article  Google Scholar 

  • Perafán, G., Reyes, L., & Salcedo, L. (2001). Acciones y Creencias Tomo II. Análisis e interpretaciones de creencias en física. Bogotá: Universidad Pedagógica Nacional. (Actions and Beliefs volume II. Analysis and interpretation of beliefs in physics).

    Google Scholar 

  • Poccovi, C., & Finney, F. (2002). Lines of force: Faraday’s and students’ views. Science & Education, 11(5), 459–474.

    Article  Google Scholar 

  • Porlán, R., Martín del Pozo, R., Rivero, A., Harres, J., Azcárate, P., & Pizzato, M. (2011). El cambio del profesorado de ciencias II: Itinerarios de progresión y obstáculos en estudiantes de magisterio. Enseñanza de las ciencias, 29(3), 353–370. (Change in science teachers II: Itineraries of progression and obstacles in student primary teachers).

    Google Scholar 

  • Purcell, E. (1985). Electricity and magnetism. Berkeley physics course, V 2 (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Richards, J. C. (1998). Beyond training: perspectives on language teacher education. New York: Cambridge University Press.

    Google Scholar 

  • Rozenszajn, R., & Yarden, A. (2013). Expansion of biology teachers’ pedagogical content knowledge (PCK) during a long-term professional development program. Research in Science Education, 44(1), 189–213.

    Article  Google Scholar 

  • Saarelainen, M., Laaksone, A., & Hirvomen, P. E. (2007). Students’ initial knowledge of electric and magnetic fields—more profound explanations and reasoning models for undesired conceptions. European Journal of Physics, 28, 51–60.

    Article  Google Scholar 

  • Saarelainen, M., Laaksone, A., & Hirvomen, P. E. (2009). Designing a teaching sequence for electrostatics at undergraduate level by using educational reconstruction. Latin American Journal of Physics Education, 3(3), 518–526.

    Google Scholar 

  • Sandoval, M., & Mora, C. (2009). Modelos erróneos sobre la comprensión del campo eléctrico en estudiantes universitarios. Latin-American Journal of Physics Education, 3(3), 647–655. (Erroneus models about the understanding of the electric field in university students).

    Google Scholar 

  • Scaife, T. M., & Heckler, A. F. (2011). Interference between electric and magnetic concepts in introductory physics. Physical Review Special Topics - Physics Education Research, 7(1), 010104.

    Article  Google Scholar 

  • Seung, E., & Bryan, L. A. (2010). Graduate teaching assistants’ knowledge development for teaching a novel physics curriculum. 40, 675–698.

  • Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Singh, C. (2006). Student understanding of symmetry and Gauss’s law of electricity. American Journal of Physics, 74(10), 923–936.

    Article  Google Scholar 

  • Sperandeo-Mineo, M., Capizzo, M. C., Lupo, L., Monroy, G., Lombardi, S., & Testa, I. (2010). Pedagogical content knowledge as a tool to understand and develop teachers’competences. Quaderni di Ricerca in Didattica (Science), 1(1), 1–16.

    Google Scholar 

  • Thompson, J. R., Christensen, W. M., & Wittmann, M. C. (2011). Preparing future teachers to anticipate student difficulties in physics in a graduate-level course in physics, pedagogy, and education research. Physical Review Special Topics - Physics Education Research, 7(1), 010108.

    Article  Google Scholar 

  • Törnkvist, S., Petterson, A., & Tränstromer, G. (1993). Confusion by representation: on students’ comprehension on the electric field concept. American Journal of Physics, 61(4), 335–338.

    Article  Google Scholar 

  • Van der Valk, T., & Broekman, H. (1999). The lesson preparation method: a way of investigating pre-service teachers’ pedagogical content knowledge. European Journal of Teacher Education, 22(1), 11–22.

    Article  Google Scholar 

  • Van Driel, J., & Berry. (2010). A pedagogical content knowledge. In P. Peterson, E. Baker, & B. McGaw (Eds.), International Encyclopedia of Education (pp. 656–661). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Van Driel, J., Verloop, N., & De Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.

    Article  Google Scholar 

  • Velazco, S., & Salinas, J. (2001). Comprensión de los Conceptos de Campo, Energía y Potencial Eléctricos y Magnéticos en Estudiantes Universitarios. Revista Brasileira de Ensino de Física, 23(3), 308–318. (Understanding the concepts of electric and magnetic field, energy, and potential in university students).

    Article  Google Scholar 

  • Viennot, L., & Raison, S. (1999). Design and evaluation of a research-based teaching sequence: the superposition of electric fields. International Journal of Science Education, 21(1), 1–16.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by Research Project EDU2012-34140 of the Ministry of Economy and Competitiveness (Spain) and Government of Extremadura (Spain). L.M. wishes to express her gratitude to the Universidad de Extremadura for the award of a pre-doctoral studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Viviana Melo-Niño.

Appendices

Appendix A

1. What do you consider when writing a lesson plan?

2. Why is planning important?

3 What do you understand by teaching strategies?

4. What kinds of teaching strategies can be used in the teaching of physics? in the electric field teaching? When or why would you use these strategies?

5. What are the most important concepts, ideas, or skills you want students learn on electric field? Why are they important?

6. What are some relevant real-life examples, analogies, or situations that can help students understand the topic?

7. What knowledge you know about history, epistemology and philosophy of electric field and electric force? And what historical aspects are important for teaching the electric field?

8. What criteria do you use to select your sequence the topics for electrostatics teaching?

9. What do you expect your students to learn about the electric field?

10. What obstacles/limitations are connected with electrostatic teaching?

11. How do you evaluate student understanding on electric field?

Appendix B

ᅟ Category system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo-Niño, L.V., Cañada, F. & Mellado, V. Initial Characterization of Colombian High School Physics Teachers’ Pedagogical Content Knowledge on Electric Fields. Res Sci Educ 47, 25–48 (2017). https://doi.org/10.1007/s11165-015-9488-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-015-9488-4

Keywords

Navigation