Skip to main content

Opportunities and Challenges of STEM Education

  • Chapter
  • First Online:
Asia-Pacific STEM Teaching Practices

Abstract

In recent years, the ubiquitous calls for science, technology, engineering, and mathematics (STEM) education has increasingly encouraged educators and policymakers to promote STEM teaching and learning in classrooms. We reviewed research studies on integrated STEM in science education; most of the research findings showed a lack of concrete conclusions about the influence of integrated STEM. For instance, little is known about how and to what extent integrated STEM learning experiences may foster student creativity, support the development of higher order thinking skills, or impact their epistemological beliefs and views about science learning. Moreover, the review found only a few studies that looked into issues about the preparation of STEM teachers in their initial teacher education and professional development programs on integrated STEM. More research about the effectiveness of various teaching practices (e.g., instructional design, teaching strategies, etc.) is needed to help preservice and in-service teachers develop expertise for teaching integrated STEM.

Ying-Shao Hsu is a visiting professor at University of Johannesburg, South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References marked with an asterisk indicate the 26 studies included in the review

  • *Adedokun, O. A., Bessenbacher, A. B., Parker, L. C., Kirkham, L. L., & Burgess, W. D. (2013). Research skills and STEM undergraduate research students’ aspirations for research careers: Mediating effects of research self-efficacy. Journal of Research in Science Teaching, 50(8), 940–951.

    Article  Google Scholar 

  • Allen, M., Webb, A. W., & Matthews, C. E. (2016). Adaptive teaching in STEM: Characteristics for effectiveness. Theory into Practice, 55(3), 217–224.

    Article  Google Scholar 

  • Breiner, J., Harkness, S., Johnson, C. C., & Koehler, C. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11.

    Article  Google Scholar 

  • *Brown, R. E., & Bogiages, C. A. (2019). Professional development through STEM integration: How early career math and science teachers respond to experiencing integrated STEM tasks. International Journal of Science and Mathematics Education, 17(1), 111–128.

    Article  Google Scholar 

  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM educa-tion. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A frame-work for integrated STEM education (pp. 23–37). New York, NY: Routledge/Taylor & Francis.

    Google Scholar 

  • *Burgin, S. R., McConnell, W. J., & Flowers III, A. M. (2015). “I actually contributed to their research”: The influence of an abbreviated summer apprenticeship program in science and engineering for diverse high-school learners. International Journal of Science Education, 37(3), 411–445.

    Google Scholar 

  • *Carrier, S. J., Whitehead, A. N., Walkowiak, T. A., Luginbuhl, S. C., & Thomson, M. M. (2017). The development of elementary teacher identities as teachers of science. International Journal of Science Education, 39(13), 1733–1754.

    Article  Google Scholar 

  • *Chien, Y. H., & Chu, P. Y. (2017). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16(6), 1047–1064.

    Google Scholar 

  • *Dickerson, D. L., Eckhoff, A., Stewart, C. O., Chappell, S., & Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education, 44(3), 483–506.

    Article  Google Scholar 

  • Ejiwale, J. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63–74.

    Google Scholar 

  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1). https://doi.org/10.1186/s40594-016-0036-1.

  • English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5–24.

    Article  Google Scholar 

  • *Guzey, S. S., Ring-Whalen, E. A., Harwell, M., & Peralta, Y. (2019). Life STEM: A case study of life science learning through engineering design. International Journal of Science and Mathematics Education, 17(1), 23–42.

    Article  Google Scholar 

  • *Han, S., Capraro, R. M., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13(5), 1089–1113.

    Article  Google Scholar 

  • Han, S., Yalvac, B., Capraro, M. M., & Capraro, R. M. (2015). In-service teachers’ implementation and understanding of STEM project based learning. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 63–76.

    Google Scholar 

  • *Hughes, R. M., Nzekwe, B., & Molyneaux, K. J. (2013). The single sex debate for girls in science: A comparison between two informal science programs on middle school students’ STEM identity formation. Research in Science Education, 43(5), 1979–2007.

    Article  Google Scholar 

  • *King, D., & English, L. D. (2016). Engineering design in the primary school: Applying stem concepts to build an optical instrument. International Journal of Science Education, 38(18), 2762–2794.

    Article  Google Scholar 

  • *Kitchen, J. A., Sonnert, G., & Sadler, P. M. (2018). The impact of college- and university-run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 102(3), 529–547.

    Article  Google Scholar 

  • *Korur, F., Efe, G., Erdogan, F., & Tunç, B. (2017). Effects of toy crane design-based learning on simple machines. International Journal of Science and Mathematics Education, 15(2), 251–271.

    Article  Google Scholar 

  • *Krogh, L. B., & Andersen, H. M. (2013). “Actually, I may be clever enough to do it”: Using identity as a lens to investigate students’ trajectories towards science and university. Research in Science Education, 43(2), 711–731.

    Google Scholar 

  • *Lamb, R., Akmal, T., & Petrie, K. (2015). Development of a cognition-priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 52(3), 410–437.

    Article  Google Scholar 

  • *Means, B., Wang, H., Wei, X., Lynch, S. J., Peters, V. L., Young, V., et al. (2017). Expanding STEM opportunities through inclusive STEM-focused high schools. Science Education, 101(5), 681–715.

    Article  Google Scholar 

  • *Means, B., Wang, H., Young, V., Peters, V. L., & Lynch, S. J. (2016). STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching, 53(5), 709–736.

    Article  Google Scholar 

  • *Micari, M., & Light, G. (2009). Reliance to independence: Approaches to learning in peer-led undergraduate science, technology, engineering, and mathematics workshops. International Journal of Science Education, 31(13), 1713–1741.

    Article  Google Scholar 

  • *Micari, M., Van Winkle, Z., & Pazos, P. (2016). Among friends: The role of academic-preparedness diversity in individual performance within a small-group STEM learning environment. International Journal of Science Education, 38(12), 1904–1922.

    Article  Google Scholar 

  • National Academy of Engineering & National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press. https://doi.org/10.17226/18612.

    Book  Google Scholar 

  • National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press. https://doi.org/10.17226/18290.

    Book  Google Scholar 

  • *Park, D. Y., Park, M. H., & Bates, A. B. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275–294.

    Article  Google Scholar 

  • Penner, D. E., Giles, N. D., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125–143.

    Article  Google Scholar 

  • *Prieto, E., & Dugar, N. (2017). An enquiry into the influence of mathematics on students’ choice of STEM careers. International Journal of Science and Mathematics Education, 15(8), 1501–1520.

    Article  Google Scholar 

  • *Romine, W. L., & Sadler, T. D. (2016). Measuring changes in interest in science and technology at the college level in response to two instructional interventions. Research in Science Education, 46(3), 309–327.

    Article  Google Scholar 

  • Ruiz-Primo, M. A., Shavelson, R. J., Hamilton, L., & Klein, S. (2002). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching, 39(5), 369–393.

    Article  Google Scholar 

  • *Sahin, A., Gulacar, O., & Stuessy, C. (2015). High school students’ perceptions of the effects of international science olympiad on their STEM career aspirations and twenty-first century skill development. Research in Science Education, 45(6), 785–805.

    Article  Google Scholar 

  • Saxton, E., Burns, R., Holveck, S., Kelley, S., Prince, D., Rigelman, N., et al. (2014). A common measurement system for K-12 STEM education: Adopting an educational evaluation methodology that elevates theoretical foundations and systems thinking. Studies in Educational Evaluation, 40, 18–35.

    Article  Google Scholar 

  • *Schnittka, C. G., Evans, M. A., Won, S. G. L., & Drape, T. A. (2016). After-school spaces: Looking for learning in all the right places. Research in Science Education, 46(3), 389–412.

    Article  Google Scholar 

  • *Schütte, K., & Köller, O. (2015). “Discover, understand, implement, and transfer”: Effectiveness of an intervention programme to motivate students for science. International Journal of Science Education, 37(14), 2306–2325.

    Article  Google Scholar 

  • Shaughnessy, J. M. (2013). Mathematics in a STEM context. Mathematics Teaching in the Middle School, 18(6), 324–327. https://doi.org/10.5951/mathteacmiddscho.18.6.0324.

    Article  Google Scholar 

  • Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1). https://doi.org/10.1186/s40594-017-0068-1.

  • *Tippett, C. D., & Milford, T. M. (2017). Findings from a pre-kindergarten classroom: Making the case for STEM in early childhood education. International Journal of Science and Mathematics Education, 15(Suppl 1), 67–86. https://doi.org/10.1007/s10763-017-9812-8.

    Article  Google Scholar 

  • *Todd, B., & Zvoch, K. (2017). Exploring girls’ science affinities through an informal science education program. Research in Science Education. Advance online publication. https://doi.org/10.1007/s11165-017-9670-y.

    Article  Google Scholar 

  • Tondeur, J., van Braak, J., Sang, G., Voogt, J., Fisser, P., & Ottenbreit-Leftwich, A. (2012). Pre-paring pre-service teachers to integrate technology in education: A synthesis of qualitative evidence. Computers & Education, 59(1), 134–144.

    Article  Google Scholar 

  • Vasquez, J. A., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics. Portsmouth, NH: Heinemann.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Institute for Research Excellence in Learning Sciences of National Taiwan Normal University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project and Ministry of Science and Technology 107-2511-H-003-043-MY3 Project by the Ministry of Education in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Shao Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, YS., Fang, SC. (2019). Opportunities and Challenges of STEM Education. In: Hsu, YS., Yeh, YF. (eds) Asia-Pacific STEM Teaching Practices. Springer, Singapore. https://doi.org/10.1007/978-981-15-0768-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0768-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0767-0

  • Online ISBN: 978-981-15-0768-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics