Skip to main content

Advertisement

Log in

A Theoretical Framework for Integrated STEM Education

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

For several decades there has been a broad consensus on the need to promote scientific literacy and, ultimately, to promote the full development of student competency from an early age. However, many of the results recorded in the educational field are not very encouraging. Although interdisciplinarity has a more extensive trajectory, the continuous questioning of traditional teaching methods, due to their inefficiency, has given rise to the emergence of educational approaches that integrate the teaching of diverse scientific disciplines in a more contextualized, coherent, and comprehensive manner. The body of empirical research on the application of these approaches has grown, while leaving behind some essential theoretical questions. In the present work, a theoretical framework is proposed for integrated science, technology, engineering, and math (STEM) education, a current teaching approach with the important momentum. Based on the epistemological stance of Larry Laudan, three levels of scientific commitment are adopted: with theories, methods, and aims. Regarding the theoretical commitment, three axes of support are established for this framework: epistemological, psychological, and didactical. This mechanism allows us to construct a consistent model that may contribute to developing coherent integrated STEM education. In addition, an example of a real application of this theoretical framework is provided in the design, implementation, and evaluation of a STEM didactic unit in the primary education stage, demonstrating its coherence and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Some examples based on historical scientific events can be found in chapter four of Laudan’s book, Dissecting the holistic picture of scientific change (1984).

References

  • Aguilera Morales, D., Martín-Páez, T., Valdivia-Rodríguez, V., Ruiz-Delgado, A., Williams-Pinto, L., Vílchez-González, J. M., & Perales-Palacios, F. J. (2018). Inquiry-based science education. A systematic review of Spanish production. Revista De Educación, 381, 259–284. https://doi.org/10.4438/1988-592X-RE-2017-381-388

    Article  Google Scholar 

  • Aikenhead, G. (2015). Humanist perspectives on science education. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 467–471). Springer.

    Chapter  Google Scholar 

  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2010). “Doing” science versus “being” a scientist: Examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. Science Education, 94(4), 617–639. https://doi.org/10.1002/sce.20399

    Article  Google Scholar 

  • Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012). Science aspirations, capital, and family habitus: How families shape children’s engagement and identification with science. American Educational Research Journal, 49(5), 881–908. https://doi.org/10.3102/000283121143329

    Article  Google Scholar 

  • Archer, L., Osborne, J., DeWitt, J., Dillon, J., Wong, B., & Willis, B. (2013). ASPIRES. Young people’s science and career aspirations, age 10–14. Retrieved from King’s College London website: http://www.kcl.ac.uk/sspp/departments/education/research/ASPIRES/ASPIRES-final-report-December-2013.pdf

  • Arriassecq, I., Greca, I. M., & Cayul, E. E. (2017). Teaching-learning sequences based on research results: proposal of a theoretical framework to address Special Relativity Theory. Enseñanza de las Ciencias, 35(1), 133–155. https://doi.org/10.5565/rev/ensciencias.1716

  • Artigue, M. (1988). Ingénierie didactique. Recherches En Didactique Des Mathématiques, 9(3), 281–308.

    Google Scholar 

  • Astolfi, J. P. (1988). El aprendizaje de conceptos científicos: Aspectos epistemológicos, cognitivos y lingüísticos. Enseñanza De Las Ciencias, 6(2), 147–155.

    Google Scholar 

  • Astolfi, J. P. (1994). El trabajo didáctico de los obstáculos, en el corazón de los aprendizajes científicos. Enseñanza De Las Ciencias, 12(2), 206–216.

    Google Scholar 

  • Astolfi, J. P. (1999). El tratamiento didáctico de los obstáculos epistemológicos. Revista Educación y Pedagogía, 11(25), 149–171.

    Google Scholar 

  • Astolfi, J. P., Darot, É., Ginsburger-Vogel, Y., & Toussaint, J. (1997). Mots-clés de la didactique des sciences. Repères, définitions, bibliographies. De Boeck Université.

    Google Scholar 

  • Ausubel, D. P. (1968). Educational psychology: A cognitive view. Holt, Rinehart and Winston.

    Google Scholar 

  • Authors. (n.di)

  • Bachelard, G. (1938). La formation de l’esprit scientifique: Contribution à une psychanalyse de la connaissance objective. Librairie Philosophique J. Vrin.

    Google Scholar 

  • Bevins, S., & Price, G. (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38(1), 17–29. https://doi.org/10.1080/09500693.2015.1124300

    Article  Google Scholar 

  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

    Article  Google Scholar 

  • Brown, J. (2012). The current status of STEM education research. Journal of STEM Education, 13(5), 7–11.

    Google Scholar 

  • Buty, C., Tiberghien, A., & Le Maréchal, J. F. (2004). Learning hypotheses and an associated tool to design and to analyse teaching-learning sequences. International Journal of Science Education, 26(5), 579–604. https://doi.org/10.1080/09500690310001614735

    Article  Google Scholar 

  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30–35.

    Google Scholar 

  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA.

    Google Scholar 

  • Calabrese Barton, A. M. (2012). Citizen(s’) science. A response to “The future of citizen science.” Democracy & Education, 20(2), 1–4.

    Google Scholar 

  • Capraro, R. M., Capraro, M. M., & Morgan, J. R. (2013). STEM project-based learning. An integrated Science, Technology, Engineering, and Mathematics (STEM) approach. Rotterdam, Netherlands: Sense

  • Chesky, N. Z., & Wolfmeyer, M. R. (2015). Philosophy of STEM education: A critical investigation. Palgrave Macmillan.

    Book  Google Scholar 

  • Chu, H.-E., Martin, S. N., & Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251–1266. https://doi.org/10.1007/s10763-018-9922-y

    Article  Google Scholar 

  • Commission, European. (2007). Science education now: A renewed pedagogy for the future of Europe. European Communities.

    Google Scholar 

  • Commission, European. (2015). Science education for responsible citizenship. European Union.

    Google Scholar 

  • Connor, A. M., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM: Strategies for enhancing engineering & technology education. International Journal of Engineering Pedagogies, 5(2), 37–47. https://doi.org/10.3991/ijep.v5i2.4458

    Article  Google Scholar 

  • Coria, K., & Porta Massuco, C. (2020). Galaxia inter. Una introducción a las problemáticas interdisciplinarias. UNICEN.

    Google Scholar 

  • Crippen, K. J., & Archambault, L. (2012). Scaffolded inquiry-based instruction with technology: A signature pedagogy for STEM education. Computers in the Schools, 29(1–2), 157–173. https://doi.org/10.1080/07380569.2012.658733

    Article  Google Scholar 

  • Dahncke, H., Duit, R., Gilbert, J., Östman, L., Psillos, D., & Pushkin, D. B. (2001). Science education versus science in the academy: Questions-discussion-perspectives. In H. Behrendt, H. Dahncke, R. Duit, W. Gräber, M. Komorek, A. Kross, & P. Reiska (Eds.), Research in science education. Past, present, and future 43–48.Kluwer Academic.

    Google Scholar 

  • Delors, J. (1996). Learning: The treasure within. Report to UNESCO of the international commission on education for the twenty-first century. UNESCO.

    Google Scholar 

  • Develaki, M. (2020). Comparing crosscutting practices in STEM disciplines. Science & Education, 29(4), 949–979. https://doi.org/10.1007/s11191-020-00147-1

    Article  Google Scholar 

  • DeWitt, J., & Archer, L. (2015). Who aspires to a science career? A comparison of survey responses from primary and secondary school students. International Journal of Science Education, 37(13), 2170–2192. https://doi.org/10.1080/09500693.2015.1071899

    Article  Google Scholar 

  • Duit, R. (2006). Research on science teaching. A prerequisite for improving educational practice. Revista Mexicana de Investigación Educativa, 11(30), 741–770.

    Google Scholar 

  • Duit, R., Gropengießer, H., & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: the model of educational reconstruction. In H. E. Fischer (Ed.), Developing standards in research on science education (pp. 1–9). Taylor & Francis.

    Google Scholar 

  • Duschl, R. A. (1990). Restructuring science education. The importance of theories and their development. Teacher College Press.

    Google Scholar 

  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1–8. https://doi.org/10.1186/s40594-016-0036-1

    Article  Google Scholar 

  • Erduran, S. (2020). Nature of “STEM”? Science & Education, 29(4), 781–784. https://doi.org/10.1007/s11191-020-00150-6

    Article  Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2007). Argumentation in science education: Perspectives from classroom-based research. Springer.

    Book  Google Scholar 

  • Falloon, G., Hatzigianni, M., Bower, M., Forbes, A., & Stevenson, M. (2020). Understanding K-12 STEM education: A framework for developing STEM literacy. Journal of Science Education and Technology, 29(3), 369–385. https://doi.org/10.1007/s10956-020-09823-x

    Article  Google Scholar 

  • Fensham, P. J. (2001). Science content as problematic: Issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Gräber, M. Komorek, A. Kross, & P. Reiska (Eds.), Research in science education. Past, present, and future 27–41.Kluwer Academic.

    Google Scholar 

  • Frodeman, R., Klein, J. T., & Pacheco, R. (Eds.). (2017). The Oxford handbook of interdisciplinarity (2nd ed.). Oxford University Press.

    Google Scholar 

  • Funtowicz, S. O., & Ravetz, J. R. (2000). La ciencia posnormal. Ciencia con la gente. Icaria.

    Google Scholar 

  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 38(3), 300–329. https://doi.org/10.3102/0034654312457206

    Article  Google Scholar 

  • Gallagher, S. A., Sher, B. T., Stepien, W. J., & Workman, D. (1995). Implementing problem-based learning in science classrooms. School Science and Mathematics, 95(3), 136–146. https://doi.org/10.1111/j.1949-8594.1995.tb15748.x

    Article  Google Scholar 

  • Gil Cantero, F., & Reyero, D. (2014). The priority of the philosophy of education on the empirical disciplines in educational research. Revista Española De Pedagogía, LXXI, I(258), 263–280.

    Google Scholar 

  • Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Springer.

    Book  Google Scholar 

  • Gough, A. (2015). STEM policy and science education: Scientistic curriculum and sociopolitical silences. Cultural Studies of Science Education, 10(2), 445–458. https://doi.org/10.1007/s11422-014-9590-3

    Article  Google Scholar 

  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1–11. https://doi.org/10.1080/095006900289976

    Article  Google Scholar 

  • Greca, I. M., Ortiz-Revilla, J., & Arriassecq, I. (2021). Design and evaluation of a STEAM teaching-learning sequence for primary education. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1802. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802

  • Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., & Baartman, L. (2014). Promoting science and technology in primary education: A review of integrated curricula. Studies in Science Education, 50(1), 47–84. https://doi.org/10.1080/03057267.2013.877694

    Article  Google Scholar 

  • Herschbach, D. R. (2011). The STEM Initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96–122.

    Article  Google Scholar 

  • Hoachlander, G., & Yanofsky, D. (2011). Making STEM real. Educational Leadership, 68(6), 60–65.

    Google Scholar 

  • Hoeg, D., & Bencze, L. (2017). Rising against a gathering storm: A biopolitical analysis of citizenship in STEM policy. Cultural Studies of Science Education, 12(4), 843–861. https://doi.org/10.1007/s11422-017-9838-9

    Article  Google Scholar 

  • Kang, N.-H. (2019). A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pacific Science Education, 5(6), 1–22. https://doi.org/10.1186/s41029-019-0034-y

    Article  Google Scholar 

  • Kaya, E., & Erduran, S. (2016). From FRA to RFN, or how the family resemblance approach can be transformed for science curriculum analysis on nature of science. Science & Education, 25(9–10), 1115–1133. https://doi.org/10.1007/s11191-016-9861-3

    Article  Google Scholar 

  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1–11. https://doi.org/10.1186/s40594-016-0046-z

    Article  Google Scholar 

  • Kezar, A., Gehrke, S., & Bernstein-Sierra, S. (2017). Designing for success in STEM communities of practice: Philosophy and personal interactions. The Review of Higher Education, 40(2), 217–244. https://doi.org/10.1353/rhe.2017.0002

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. The University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–196). London, England: Cambridge University Press.

  • Laudan, L. (1977). Progress and its problems. University of California Press.

    Google Scholar 

  • Laudan, L. (1984). Science and values: The aims of science and their role in scientific debate. University of California Press.

    Google Scholar 

  • Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718. https://doi.org/10.3102/0034654315627366

    Article  Google Scholar 

  • Levinson, R. (2018). Introducing socio-scientific inquiry-based learning (SSIBL). School Science Review, 100(371), 31–35.

    Google Scholar 

  • Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32(5), 669–685. https://doi.org/10.1080/09500690902792385

    Article  Google Scholar 

  • Martinand, J. L. (1986). Connaître et transformer la matière. Peter Lang.

    Google Scholar 

  • Martinand, J. L. (1988). Cuestiones actuales de la didáctica de las ciencias físicas en Francia: Observaciones comparativas. Enseñanza De Las Ciencias, 6(1), 47–53.

    Google Scholar 

  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

    Article  Google Scholar 

  • Matthews, M. R. (Ed.). (2014). International handbook of research in history, philosophy and science teaching. Springer.

    Google Scholar 

  • Matthews, M. R. (Ed.). (2018). History, philosophy and science teaching. New perspectives. Springer.

    Google Scholar 

  • McComas, W. F., & Burgin, S. R. (2020). A critique of “STEM” education. Science & Education, 29(4), 805–829. https://doi.org/10.1007/s11191-020-00138-2

    Article  Google Scholar 

  • Méheut, M., & Psillos, D. (2004). Teaching-learning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515–535. https://doi.org/10.1080/09500690310001614762

    Article  Google Scholar 

  • Millar, V. (2020). Trends, issues and possibilities for an interdisciplinary STEM curriculum. Science & Education, 29(4), 929–948. https://doi.org/10.1007/s11191-020-00144-4

    Article  Google Scholar 

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496. https://doi.org/10.1002/tea.20347

    Article  Google Scholar 

  • Mizell, S., & Brown, S. (2016). The current status of STEM education research 2013–2015. Journal of STEM Education, 17(4), 52–56.

    Google Scholar 

  • Morin, E. (1990). Introduction à la pensée complexe. ESF.

    Google Scholar 

  • Murphy, S., MacDonald, A., Danaia, L., & Wang, C. (2019). An analysis of Australian STEM education strategies. Policy Futures in Education, 12(2), 122–139. https://doi.org/10.1177/1478210318774190

    Article  Google Scholar 

  • National Research Council. (1996). National science education standards. National Academy Press.

    Google Scholar 

  • National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academy Press.

    Google Scholar 

  • National Research Council. (2008). Ready, set, SCIENCE!: Putting research to work in k-8 science classrooms. The National Academies Press.

    Google Scholar 

  • National Research Council. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. The National Academies Press.

    Google Scholar 

  • National Research Council. (2011). Successful K-12 STEM education. Identifying effective approaches in science, technology, engineering, and mathematics. The National Academies Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press.

    Google Scholar 

  • National Research Council. (2014). STEM integration in K-12 education. Status, prospects, and an agenda for research. The National Academies Press.

    Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press.

    Google Scholar 

  • Ortiz-Revilla, J. (2020). El desarrollo competencial en la Educación Primaria: efectos de una propuesta STEAM integrada (Doctoral dissertation). Retrieved from http://riubu.ubu.es/handle/10259/5521

  • Ortiz-Revilla, J., Greca, I. M., & Adúriz-Bravo, A. (2018). La Educación STEAM y el desarrollo competencial en la Educación Primaria. In I. M. Greca & J. Á. Meneses Villagrá (Eds.), Proyectos STEAM para la Educación Primaria. Fundamentos y aplicaciones prácticas (pp. 41-54). Madrid, Spain: Dextra.

  • Ortiz-Revilla, J., Greca, I. M., & Meneses Villagrá, J. Á. (2019). La investigación de diseño en el desarrollo de propuestas didácticas STEAM. In P. Membiela, M. I. Cebreiros & M. Vidal (Eds.), Nuevos retos en la enseñanza de las ciencias (pp. 217-222). Ourense, Spain: Educación Editora.

  • Ortiz-Revilla, J., Adúriz-Bravo, A., & Greca, I. M. (2020). A framework for epistemological discussion around an integrated STEM education. Science & Education, 29(4), 857–880. https://doi.org/10.1007/s11191-020-00131-9

  • Ortiz-Revilla, J., Greca, I. M., & Adúriz-Bravo, A. (2021a). Conceptualization of competencies: systematic review of research in primary education. Profesorado. Revista de Currículum y Formación del Profesorado, 25(1), 223–250. https://doi.org/10.30827/profesorado.v25i1.8304

  • Ortiz-Revilla, J., Greca, I. M., & Meneses-Villagrá, J. Á. (2021b). Effects of an integrated STEAM approach on the development of competence in primary education students. Journal for the Study of Education and Development, 44(4). https://doi.org/10.1080/02103702.2021.1925473

  • Perrenoud, P. (1997). Construire des compétences dès l’école. ESF.

    Google Scholar 

  • Perrenoud, P. (1999). Dix nouvelles compétences pour enseigner. Invitation au voyage. ESF.

    Google Scholar 

  • Piaget, J. (1936). La naissance de l’intelligence chez l’enfant. Delachaux et Niestlé.

    Google Scholar 

  • Pleasants, J. (2020). Inquiring into the nature of STEM problems. Science & Education, 29(4), 831–855. https://doi.org/10.1007/s11191-020-00135-5

    Article  Google Scholar 

  • Psillos, D. (2001). Science education researchers and research in transition: Issues and policies. In H. Behrendt, H. Dahncke, R. Duit, W. Gräber, M. Komorek, A. Kross, & P. Reiska (Eds.), Research in science education. Past present and future (pp. 11–16). Kluwer Academic.

    Google Scholar 

  • Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410–426. https://doi.org/10.1007/s10956-016-9602-z

    Article  Google Scholar 

  • Quigley, C., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School Science and Mathematics, 117(1–2), 1–12. https://doi.org/10.1111/ssm.12201

    Article  Google Scholar 

  • Reynante, B. M., Selbach-Allen, M. E., & Pimentel, D. R. (2020). Exploring the promises and perils of integrated STEM through disciplinary practices and epistemologies. Science & Education, 29(4), 785–803. https://doi.org/10.1007/s11191-020-00121-x

    Article  Google Scholar 

  • Ritz, J. M., & Fan, S. C. (2015). STEM and technology education: International state of the art. International Journal of Technology and Design Education, 25(4), 429–451. https://doi.org/10.1007/s10798-014-9290-z

    Article  Google Scholar 

  • Romero-Ariza, M. (2017). Inquiry-based learning: Is there enough evidence of its benefits in science education? Revista Eureka Sobre Enseñanza y Divulgación De Las Ciencias, 27(2), 286–299.

    Article  Google Scholar 

  • Sanders, M. (2008). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.

    Google Scholar 

  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. https://doi.org/10.1080/09500693.2011.605182

    Article  Google Scholar 

  • United Nations Educational, Scientific and Cultural Organization. (2016). Education 2030. Incheon Declaration and framework for action for the implementation of sustainable development goal 4. Retrieved from http://unesdoc.unesco.org/images/0024/002456/245656E.pdf

  • Vallett, D. B., Lamb, R., & Annetta, L. (2018). After-school and informal STEM projects: The effect of participant self-selection. Journal of Science Education and Technology, 27(3), 248–255. https://doi.org/10.1007/s10956-017-9721-1

    Article  Google Scholar 

  • Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 39–59). Lawrence Erlbaum Associates.

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didáctique des Mathématiques, 10(23), 133–170.

    Google Scholar 

  • Vergnaud, G. (1996). Algunas ideas fundamentales de Piaget en torno a la didáctica. Perspectivas, 26(1), 195–207.

    Google Scholar 

  • Vergnaud, G. (1998). A comprehensive theory of representation for mathematics education. Journal of Mathematical Behavior, 17(2), 167–181. https://doi.org/10.1016/S0364-0213(99)80057-3

    Article  Google Scholar 

  • Vergnaud, G. (2007). In what sense the conceptual fields theory might help us to facilitate meaningful learning? Investigações Em Ensino De Ciências, 12(2), 285–302.

    Google Scholar 

  • Vergnaud, G. (2013). Conceptual Development and Learning. Revista Qurriculum, 26, 39–59.

    Google Scholar 

  • Vygotsky, L. S. (1962). Thought and language. The MIT Press.

    Book  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

    Google Scholar 

  • Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1–13. https://doi.org/10.5703/1288284314636

    Article  Google Scholar 

  • Williams, J. P. (2011). STEM education: Proceed with caution. Design and Technology Education: an International Journal, 16(1), 26–35.

    Google Scholar 

  • Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26. https://doi.org/10.1007/s11422-014-9578-z

    Article  Google Scholar 

  • Zeidler, D. L., & Sadler, T. D. (2007). The role of moral reasoning in argumentation: conscience, character, and care. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 201–216). Springer.

    Chapter  Google Scholar 

  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12–19. https://doi.org/10.1111/j.1949-8594.2012.00101.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Agustín Adúriz-Bravo—University of Buenos Aires—for his detailed and significant feedback on our manuscript.

Funding

This study was partially funded by the European Union through project 2017–1-ES01-KA201-038204, by the Ministry of Economy, Industry and Competitiveness of Spain through project EDU2017-89405-R, and by the Junta de Castilla y León through project BU096G18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo Ortiz-Revilla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Revilla, J., Greca, I.M. & Arriassecq, I. A Theoretical Framework for Integrated STEM Education. Sci & Educ 31, 383–404 (2022). https://doi.org/10.1007/s11191-021-00242-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-021-00242-x

Navigation