Skip to main content
Log in

Transition metal doped FeOCl activated hydrogen peroxide/persulfate for enhanced degradation of TCH

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the past few decades, the overuse of antibiotics has been a growing concern in the field of medicine. To address this issue, there has been increasing interest in the development of efficient treatment methods. Recently, research has shown that the modification of iron oxychloride with Mn, Co, or Ni can significantly enhance its performance in the degradation of tetracycline hydrochloride. This is attributed to the high similarity between Mn, Co, Ni and Fe, bimetallic systems can be constructed to improve the accelerated cycle of M(II)–M(III) and the activation of hydrogen peroxide, peroxymonosulfate and peroxydisulfate. Additionally, active substances such as SO4·, ·OH, and 1O2 have been identified in the PS system, while ·OH and 1O2 are active in the H2O2 system. In this study, due to the presence of these active substances, the degradation rate of tetracycline hydrochloride within 10 min in three different systems such as hydrogen peroxide can reach 100%. These findings offer promising prospects for the development of more effective and sustainable treatment methods for antibiotic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Chrysanthi, T. Sophia, P. Ioannis, K. Vasiliki, K. Eirini, X. Konstantinos, S. Theodoros, A. Athansios, P. Ioannis, J. Chem. Technol. Biotechnol. 98, 2235–2246 (2023). https://doi.org/10.1002/jctb.7448

  2. S. He, Q. Chen, G. Chen, G. Shi, C. Ruan, M. Feng, Y. Ma, X. Jin, X. Liu, C. Du, C. He, H. Dai, C. Cao, Microporous Mesoporous Mater. 335, 111848 (2022). https://doi.org/10.1016/j.micromeso.2022.111848

  3. T. Jun, Z. Heng, C. Jinzhong, L. Jiang, W. Yangyang, D. Jun, Front. Microbiol. 13-2022 (2023). https://doi.org/10.3389/fmicb.2022.1083974

  4. C. Zhang, Z. Yu, X. Wang, Front. Chem. 10-2022 (2022). https://doi.org/10.3389/fchem.2022.1002038

  5. Y. Tong, Z. Chen, J. Kang, J. Deng, L. Sun, H. Liu, Res. Chem. Intermed. 49, 5471–5483 (2023). https://doi.org/10.1007/s11164-023-05115-2

    Article  CAS  Google Scholar 

  6. L. Jiang, D. Chen, L. Qin, J. Liang, X. Sun, Y. Huang, J. Alloy. Compd. 783, 10–18 (2019)

    Article  CAS  Google Scholar 

  7. Y. Li, B. Yu, Z. Hu, H. Wang, Chem. Eng. J. 429, 132105 (2022)

    Article  CAS  Google Scholar 

  8. P. Chen, Y. Gou, J. Ni, Y. Liang, B. Yang, F. Jia, S. Song, Chem. Eng. J. 401, 125978 (2020)

    Article  CAS  Google Scholar 

  9. J. Cheng, Y. Xie, Y. Wei, D. Xie, W. Sun, Y. Zhang, M. Li, J. An, Chemosphere 286, 131841 (2022)

    Article  CAS  PubMed  Google Scholar 

  10. L. Wang, A. Hu, H. Liu, K. Yu, S. Wang, X. Deng, D. Huang, Appl. Surf. Sci. 589, 152902 (2022)

    Article  CAS  Google Scholar 

  11. Q. Li, J. Liu, Z. Ren, Z. Wang, F. Mao, H. Wu, R. Zhou, Y. Bu, Chem. Eng. J. 429, 132269 (2022)

    Article  CAS  Google Scholar 

  12. L. Zhang, D. Ren, Z. Zhao, Y. Xiao, J. Zhai, S. Zhang, X. Zhang, X. Gong, W. Chen, Res. Chem. Intermed. 49, 4561 (2023)

    Article  CAS  Google Scholar 

  13. K.T. Amit, K. Rahul, K. Ashutosh, S. Ravi, A.K. Nadeem, G. Kaushal Naresh, R. Mahendra, A. Raj Kumar, J. Water Process Eng. 54, 103977 (2023). https://doi.org/10.1016/j.jwpe.2023.103977

  14. C. Menghan, X. Peng, T. Ke, S. Fengyin, Z. Qingzhu, M. Dong, Z. Guangshan, Chem. Eng. J. 477, 144208 (2023). https://doi.org/10.1016/j.cej.2023.144208

  15. S. Yu, M. Shepida, M. Sozanskyi, Z. Znak, R.G. Parag, Sep. Purif. Technol. 304, 122305 (2022). https://doi.org/10.1016/j.seppur.2022.122305

  16. C.-T. Gong, G.-D. Xu, L.-J. Chen, J.-H. Jia, Y.-W. Peng, Res. Chem. Intermed. 47, 3109 (2021)

    Article  CAS  Google Scholar 

  17. Q. Yi, Z. Li, J. Li, J. Zhou, X. Li, R. Dai, X. Wang, Res. Chem. Intermed. 49, 655 (2023)

    Article  CAS  Google Scholar 

  18. H. Lee, J. Lim, M. Zhan, S. Hong, Desalination 467, 219 (2019)

    Article  CAS  Google Scholar 

  19. C. Hu, C. Xiong, Y.-L. Lin, Y. Zhu, Q. Wang, L. Xu, D. Huang, J. Haz. Mater. 431, 128574 (2022). https://doi.org/10.1016/j.jhazmat.2022.128574

  20. W. Ren, X. Huang, L. Wang, X. Liu, Z. Zhou, Y. Wang, C. Lin, M. He, W. Ouyang, Chem. Eng. J. 426, 131876 (2021)

    Article  CAS  Google Scholar 

  21. H. Song, L. Yan, Y. Wang, J. Jiang, J. Ma, C. Li, G. Wang, J. Gu, P. Liu, Chem. Eng. J. 391, 123560 (2020)

    Article  CAS  Google Scholar 

  22. D. Govindaraj, S. Ramya, J. Mohanalakshmi, M.N. Indumathi, J. Water Process Eng. 49, 102967 (2022). https://doi.org/10.1016/j.jwpe.2022.102967

  23. Y. Cherifi, A. Addad, H. Vezin, A. Barras, B. Ouddane, A. Chaouchi, S. Szunerits, R. Boukherroub, Ultrason. Sonochem. 52, 164 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. X. Zhang, M. Cao, D. Liu, J. Lei, J. Zhang, Y. Liu, L. Zhou, Res. Chem. Intermed. 49, 2793 (2023)

    Article  CAS  Google Scholar 

  25. Y. Lin, A. Hou, H. Li, C. Shi, L. Chen, B. Yuan, Y. Liu, Y. Wang, X. Liu, Res. Chem. Intermed. 49, 23 (2023)

    Article  CAS  Google Scholar 

  26. Y. Xie, K. Wu, F. Chen, J. He, J. Zhao, Res. Chem. Intermed. 27, 237 (2001)

    Article  CAS  Google Scholar 

  27. D. Lu, C. Liu, F. Zhu, Y. Liu, Y. Lin, Q. Yang, S. Han, Chemosphere 348, 140758 (2023)

    Article  PubMed  Google Scholar 

  28. G. Chen, L.-C. Nengzi, Y. Gao, G. Zhu, J. Gou, X. Cheng, Chin. Chem. Lett. 31, 2730 (2020)

    Article  CAS  Google Scholar 

  29. A. Adel, M. Gar Alalm, H.K. El-Etriby, D.C. Boffito, J. Environ. Chem. Eng. 8, 104341 (2020)

  30. X.-J. Yang, X.-M. Xu, J. Xu, Y.-F. Han, J. Am. Chem. Soc. 135, 16058 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. D. Lu, Q. Yang, Z. Chen, F. Zhu, C. Liu, S. Han, Chem. Phys. Lett. 815, 140357 (2023). https://doi.org/10.1016/j.cplett.2023.140357

  32. C. Revilla Pacheco, M.R. Riveros Cruz, J. Cárdenas Garcia, R. Terán Hilares, G.d.J. Colina Andrade, D.A. Pacheco Tanaka, A. Mogrovejo-Valdivia, Arab. J. Chem. 16, 105049 (2023). https://doi.org/10.1016/j.arabjc.2023.105049

  33. D. Lu, Z. Chen, Q. Yang, S. Han, New J. Chem. 46, 7650 (2022)

    Article  CAS  Google Scholar 

  34. L. Wang, S. Wu, H. Chen, W. Mao, W. Kang, S. Chen, H. Yu, X. Quan, Sep. Purif. Technol. 288, 120661 (2022). https://doi.org/10.1016/j.seppur.2022.120661

  35. B. Zhang, M. Chen, D. Li, H. Xu, D. Xia, J. Photochem. Photobiol. A Chem. 386, 112072 (2020). https://doi.org/10.1016/j.jphotochem.2019.112072

  36. X. Liu, W. Zhang, M. Peng, G. Zhai, L. Hu, L. Mao, Chem. Eng. J. 426, 131353 (2021). https://doi.org/10.1016/j.cej.2021.131353

  37. J. Wei, X. Feng, X. Hu, J. Yang, C. Yang, B. Liu, Colloids Surf. A Physicochem. Eng. Asp. 631, 127754 (2021). https://doi.org/10.1016/j.colsurfa.2021.127754

  38. J. Yu, M. Kang, R. Jiabing, S. Junxia, H. Guopei, Z. Xingli, Z. Kuankuan, G. Hui, Y. Changying, Z. Hua, J. Water Process Eng. (2023). https://doi.org/10.1016/j.jwpe.2023.103601

  39. J. Zhao, G. Liu, Y. Zhang, J. Dong, Y. Wang, Y. Liu, H. Li, J. Xia, Colloids Surf. A Physicochem. Eng. Asp. 648, 129357 (2022). https://doi.org/10.1016/j.colsurfa.2022.129357

  40. A. Majid, N. Ahmad, M. Rizwan, Khan, U.-D. Salah, F.A.A. Ali, J. Zhu, J. Electron. Mater. 47, 1555 (2017)

  41. J. Yan, J. Li, J. Peng, H. Zhang, Y. Zhang, B. Lai, Chem. Eng. J. 359, 1097 (2019)

    Article  CAS  Google Scholar 

  42. J. Zhang, G. Zhang, Q. Ji, H. Lan, J. Qu, H. Liu, Appl. Catal. B Environ. 266, 118665 (2020). https://doi.org/10.1016/j.apcatb.2020.118665

    Article  CAS  Google Scholar 

  43. S. Qu, C. Li, X. Sun, J. Wang, H. Luo, S. Wang, J. Ta, D. Li, Sep. Purif. Technol. 224, 132 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from the Collaborative Innovation Foundation of Shanghai Institute of Technology (Grant Number XTCX2022-10 and Grand Number XTCX2023-13).

Declarations

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Deli Lu, Fengtian Zhu, Zhe Chen, Qidong Yan, Chen liu, Ying Liu, Yushi Lin and Sheng Han. The first draft of the manuscript was written by Fengtian Zhu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Deli Lu or Sheng Han.

Ethics declarations

Conflict of interest

There are no competing conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4125 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Zhu, F., Chen, Z. et al. Transition metal doped FeOCl activated hydrogen peroxide/persulfate for enhanced degradation of TCH. Res Chem Intermed 50, 2187–2198 (2024). https://doi.org/10.1007/s11164-024-05254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-024-05254-0

Keywords

Navigation