Skip to main content
Log in

Enhanced ethanol dehydrogenation over Ni-containing zirconia-alumina catalysts with microwave-assisted synthesis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Bio-based acetaldehyde production by non-oxidative dehydrogenation of ethanol is a promising alternative for the fine chemistry industry, where acetaldehyde is an important part of the synthesis chain and co-production of hydrogen. In this paper, investigations on nickel containing alumina itterbia stabilized zirconia with microwave-assisted synthesis as catalysts for the ethanol dehydrogenation process to acetaldehyde are reported. Ni–xAl2O3–(100 − x)[Zr0,97Yb0,03]O2 (x = 35 and 65 mol%) were prepared by using microwave (MW) irradiation and by traditional heating steps during sol–gel preparation. The textural properties, structure, morphology, surface and phase composition, and RedOx properties (SEM–EDX, BET N2-physisorption, TG–DTA, XRD, EPR) of the samples were compared with the effect of the microwave-assisted synthesis and the Zr:Al ratio on the ethanol dehydrogenation is reported. Two synthesis routes were compared, and it was found that microwave pretreatment of hydrogel during sol–gel synthesis favors catalytic dehydrogenation, whereas catalysts prepared by pretreatment under uniform heating perform much worse. The microwave-assisted synthesis approach turned out to be more promising in terms of selectivity to acetaldehyde in the ethanol dehydrogenation due to form nickel oxide particles with strong support interaction in noncubic coordination catalyzing the ethanol dehydrogenation and at the same time to decrease the formation of nickel aluminate phase involved in competitive dehydration reaction to ethylene. Thus, the highest obtained selectivity to acetaldehyde was ≈ 70% at 400 °C on Ni–65AZ–MW sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data openly available in a public repository that issues datasets with DOIs.

References

  1. A.J. Akande, R.O. Idem, A.K. Dalai, Appl. Catal. A Gen. 287, 159 (2005)

    Article  CAS  Google Scholar 

  2. C.Y. Liu, K. Struwe, C.H. Lee, H.Y. Chuang, J. Sauer, J.C.C. Yu, V.H. Nguyen, C.W. Huang, J.C.S. Wu, Catal. Commun. 144, 106067 (2020)

    Article  CAS  Google Scholar 

  3. A.S. Fedotov, D.O. Antonov, O.V. Bukhtenko, V.I. Uvarov, V.V. Kriventsov, M.V. Tsodikov, Int. J. Hydrog. Energy 42, 24131 (2017)

    Article  CAS  Google Scholar 

  4. G. Słowik, M. Greluk, M. Rotko, A. Machocki, Appl. Catal. B Environ. 221, 490 (2018)

    Article  Google Scholar 

  5. K. Boudadi, A. Bellifa, C. Márquez-Álvarez, V. Cortés Corberán, Appl. Catal. A Gen. 619 (2021).

  6. N. Buasuk, T. Saelee, M. Rittiruam, S. Phatanasri, S. Praserthdam, P. Praserthdam, Top. Catal. 64, 357 (2021)

    Article  CAS  Google Scholar 

  7. M. Arapova, E. Smal, Y. Bespalko, V. Fedorova, K. Valeev, S. Cherepanova, A. Ischenko, V. Sadykov, M. Simonov, Int. J. Hydrog. Energy 46, 39236 (2021)

    Article  CAS  Google Scholar 

  8. X. Zhang, M. Zhang, J. Zhang, Q. Zhang, N. Tsubaki, Y. Tan, Y. Han, Int. J. Hydrog. Energy 44, 17887 (2019)

    Article  CAS  Google Scholar 

  9. M.H. Youn, J.G. Seo, J.C. Jung, S. Park, I.K. Song, Int. J. Hydrog. Energy 34, 5390 (2009)

    Article  CAS  Google Scholar 

  10. B. Dou, H. Zhang, Y. Song, L. Zhao, B. Jiang, M. He, C. Ruan, H. Chen, Y. Xu, Sustain. Energy Fuels 3, 314 (2019)

    Article  CAS  Google Scholar 

  11. T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Nat. Catal. 2, 955 (2019)

    Article  Google Scholar 

  12. M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrog. Energy 32, 1462 (2007)

    Article  Google Scholar 

  13. I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210, 10 (2013)

    Article  CAS  Google Scholar 

  14. J.H. Song, S. Yoo, J. Yoo, S. Park, M.Y. Gim, T.H. Kim, I.K. Song, Mol. Catal. 434, 123 (2017)

    Article  CAS  Google Scholar 

  15. S. Velu, K. Suzuki, M. Vijayaraj, S. Barman, C.S. Gopinath, Appl. Catal. B Environ. 55, 287 (2005)

    Article  CAS  Google Scholar 

  16. Y. Zeng, H. Ma, H. Zhang, W. Ying, D. Fang, Fuel 137, 155 (2014)

    Article  CAS  Google Scholar 

  17. S.J. Hassani Rad, M. Haghighi, A. Alizadeh Eslami, F. Rahmani, N. Rahemi, Int. J. Hydrog. Energy 41, 5335 (2016)

    Article  CAS  Google Scholar 

  18. J.L. Contreras, J. Salmones, J.A. Colín-Luna, L. Nuño, B. Quintana, I. Córdova, B. Zeifert, C. Tapia, G.A. Fuentes, Int. J. Hydrog. Energy 39, 18835 (2014)

    Article  CAS  Google Scholar 

  19. N. Pinton, M.V. Vidal, M. Signoretto, A. Martínez-Arias, V. Cortés Corberán, Catal. Today 296, 135 (2017)

    Article  CAS  Google Scholar 

  20. F. Jamil, M. Aslam, A.H. Al-Muhtaseb, A. Bokhari, S. Rafiq, Z. Khan, A. Inayat, A. Ahmed, S. Hossain, M.S. Khurram, M.S. Abu Bakar, Rev. Chem. Eng. 38, 185 (2022)

    Article  CAS  Google Scholar 

  21. M.N.N. Shafiqah, T.J. Siang, P.S. Kumar, Z. Ahmad, A.A. Jalil, M.B. Bahari, Q. Van Le, L. Xiao, M. Mofijur, C. Xia, S.F. Ahmed, D.V.N. Vo, Environ. Chem. Lett. 20, 1695 (2022)

    Article  CAS  Google Scholar 

  22. H. Ji, T. Wang, M. Zhang, Y. She, L. Wang, Appl. Catal. A Gen. 282, 25 (2005)

    Article  CAS  Google Scholar 

  23. T. Kawabata, Y. Shinozuka, Y. Ohishi, T. Shishido, K. Takaki, K. Takehira, J. Mol. Catal. A Chem. 236, 206 (2005)

    Article  CAS  Google Scholar 

  24. C. Li, H. Kawada, X. Sun, H. Xu, Y. Yoneyama, N. Tsubaki, ChemCatChem 3, 684 (2011)

    Article  CAS  Google Scholar 

  25. J.H. Kwak, D. Mei, C.H.F. Peden, R. Rousseau, J. Szanyi, Catal. Lett. 141, 649 (2011)

    Article  CAS  Google Scholar 

  26. H. Zhu, A. Ramanathan, J.-F. Wu, R.V. Chaudhari, B. Subramaniam, AIChE J. 59, 215 (2017)

    Google Scholar 

  27. G. Garbarino, G. Pampararo, T.K. Phung, P. Riani, G. Busca, Energies 13 (2020).

  28. Y. Huang, B. Wang, H. Yuan, Y. Sun, D. Yang, X. Cui, F. Shi, Catal. Sci. Technol. 11, 1652 (2021)

    Article  CAS  Google Scholar 

  29. H.A. Dabbagh, M. Zamani, Appl. Catal. A Gen. 404, 141 (2011)

    Article  CAS  Google Scholar 

  30. D.W. Jeong, W.J. Jang, H.S. Na, J.O. Shim, A. Jha, H.S. Roh, J. Ind. Eng. Chem. 27, 35 (2015)

    Article  CAS  Google Scholar 

  31. D. Zhang, A. Duan, Z. Zhao, G. Wan, Z. Gao, G. Jiang, K. Chi, K.H. Chuang, Catal. Today 149, 62 (2010)

    Article  CAS  Google Scholar 

  32. G.P. Osorio, S.F. Moyado, V. Petranovskii, A. Simakov, Catal. Letters 110, 53 (2006)

    Article  CAS  Google Scholar 

  33. L.I. Podzorova, A.A. Il’icheva, N.A. Mikhailina, V.Y. Shevchenko, D.S. Bashlykov, G.V. Rodicheva, L.I. Shvorneva, Inorg. Mater. 37, 51 (2001)

    Article  CAS  Google Scholar 

  34. W.P. Dow, T.J. Huang, J. Catal. 160, 171 (1996)

    Article  CAS  Google Scholar 

  35. A.I. Zhukova, S.G. Chuklina, S.A. Maslenkova, Catal. Today (2021).

  36. L. Pastor-Pérez, S. Gu, A. Sepúlveda-Escribano, T.R. Reina, Int. J. Hydrogen Energy 44, 4011 (2019)

    Article  Google Scholar 

  37. N. Devi, S. Sahoo, R. Kumar, R.K. Singh, Nanoscale 13, 11679 (2021)

    Article  CAS  PubMed  Google Scholar 

  38. C.R. Ho, V. Defalque, S. Zheng, A.T. Bell, ACS Catal. 9, 2931 (2019)

    Article  CAS  Google Scholar 

  39. L.I. Podzorova, V.E. Kutuzova, A.A. Il’ichyova, O.I. Pen’kova, V.P. Sirotinkin, A.A. Konovalov, O.S. Antonova, A.S. Baikin, Inorg. Mater. Appl. Res. 13, 1318 (2022)

    Article  Google Scholar 

  40. D.I. Svergun, P. V Konarev, V. V Volkov, M.H.J. Koch, W.F.C. Sager, 1651 (2000).

  41. J.E. Dennis, D.M. Gay, R.O.Y.E. Welsch, A.C.M. Trans, Math. Softw. 7, 348 (1981)

    Article  Google Scholar 

  42. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  43. X. Hou, R.S. Amais, B.T. Jones, G.L. Donati, in: Encycl. Anal. Chem., 2016, pp. 1–25.

  44. M. Mironiuk, M. Mikulewicz, Molecules (2018).

  45. M. Li, F. Bi, Y. Xu, P. Hao, K. Xiang, Y. Zhang, ACS Catal. (2019).

  46. N. Shimoda, D. Syoji, K. Tani, M. Fujiwara, K. Urasaki, R. Kikuchi, S. Satokawa, Elsevier B.V. (2015).

  47. E.A. Straumal, A.A. Mazilkin, I.O. Gozhikova, L.L. Yurkova, S.Y. Kottsov, S.A. Lermontov, Nanomaterials 12, 1 (2022)

    Article  Google Scholar 

  48. D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra, Ceram. Int. 33, 1275 (2007)

    Article  CAS  Google Scholar 

  49. S.G. Chuklina, A. Zhukova, Y. Fionov, D. Osaulenko, A. Fionov, D. Zhukov, A. Il'icheva, L. Podzorova, I. Mikhalenko, ChemistrySelect 7 (2022) 1.

  50. H. Cui, M. Zayat, D. Levy, J. Non Cryst. Solids 351, 2102 (2005)

    Article  CAS  ADS  Google Scholar 

  51. D. Yatsenko, S. Tsybulya 233, 61 (2018)

    CAS  Google Scholar 

  52. M. Povia, J. Herranz, T. Binninger, M. Nachtegaal, A. Diaz, J. Kohlbrecher, D.F. Abbott, B.J. Kim, T.J. Schmidt, ACS Catal. (2018).

  53. D. Le Messurier, C.M. Martin, J. Appl. Crystallogr. 39, 589 (2006)

    Article  ADS  Google Scholar 

  54. P. Venkataswamy, K.N. Rao, D. Jampaiah, B.M. Reddy, Appl. Catal. B Environ. 162, 122 (2015)

    Article  CAS  Google Scholar 

  55. I.Y. Kaplin, E.S. Lokteva, S.V. Bataeva, K.I. Maslakov, A.V. Fionov, A.V. Shumyantsev, O.Y. Isaikina, A.O. Kamaev, E.V. Golubina, Pure Appl. Chem. 93, 447 (2021)

    Article  CAS  Google Scholar 

  56. S.K. Yadav, P. Jeevanandam, J. Alloys Compd. 610, 567 (2014)

    Article  CAS  Google Scholar 

  57. W.G. Braun, M.R. Fenske, Anal. Chem. 21, 12 (1949)

    Article  CAS  Google Scholar 

  58. F. Cancino-Trejo, V. Santes, J.A.A. Cardenas, M. Gallardo, Y.G. Maldonado, L. Miranda A, O. Valdes, J.A. de los Reyes, C.E. Santolalla-Vargas, Chem. Eng. J. Adv. 12 (2022).

  59. Y. Abdelbaki, A. de Arriba, B. Solsona, D. Delgado, E. García-González, R. Issaadi, J.M. López Nieto, Appl. Catal. A Gen. 623, 1 (2021)

    Article  Google Scholar 

  60. A.V. Ghule, K. Ghule, T. Punde, J.Y. Liu, S.H. Tzing, J.Y. Chang, H. Chang, Y.C. Ling, Mater. Chem. Phys. 119, 86 (2010)

    Article  CAS  Google Scholar 

  61. A.C. Gandhi, J. Pant, S.D. Pandit, S.K. Dalimbkar, T.S. Chan, C.L. Cheng, Y.R. Ma, S.Y. Wu, J. Phys. Chem. C 117, 18666 (2013)

    Article  CAS  Google Scholar 

  62. T. Osaki, J. Sol-Gel Sci. Technol. (2021) 291.

  63. J.H. Cho, J.H. Park, T.S. Chang, J.E. Kim, C.H. Shin, Catal. Lett. 143, 1319 (2013)

    Article  CAS  Google Scholar 

  64. A. Zhao, W. Ying, H. Zhang, H. Ma, D. Fang, Catal. Commun. 17, 34 (2012)

    Article  CAS  Google Scholar 

  65. X. Cai, Y. Cai, W. Lin, J. Nat. Gas Chem. 17, 201 (2008)

    Article  CAS  Google Scholar 

  66. B. Yue, R. Zhou, Y. Wang, X. Zheng, J. Mol. Catal. A Chem. 238, 241 (2005)

    Article  CAS  Google Scholar 

  67. Y.S. Oh, H.S. Roh, K.W. Jun, Y.S. Baek, Int. J. Hydrog. Energy 28, 1387 (2003)

    Article  CAS  Google Scholar 

  68. H.R. Mahmoud, J. Mol. Catal. A Chem. 392, 216 (2014)

    Article  CAS  Google Scholar 

  69. K.-A. Thavornprasert, B. De La Goublaye De Ménorval, M. Capron, J. Gornay, L. Jalowiecki-Duhamel, X. Sécordel, S. Cristol, J.-L. Dubois, F. Dumeignil, Biofuels 3 (2012).

  70. K.A. Tarach, J. Tekla, W. Makowski, U. Filek, K. Mlekodaj, V. Girman, M. Choi, K. Góra-Marek, Catal. Sci. Technol. 6, 3568 (2016)

    Article  CAS  Google Scholar 

  71. T.K. Phung, G. Busca, Chem. Eng. J. 272, 92 (2015)

    Article  CAS  Google Scholar 

  72. T.K. Phung, L.P. Hernández, G. Busca, Appl. Catal. A Gen. 489, 180 (2015)

    Article  CAS  Google Scholar 

  73. M. Rittiruam, B. Jongsomjit, S. Praserthdam, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  74. S.G. Chuklina, A.I. Pylinina, V.V. Khoroshilov, Russ. J. Phys. Chem. A 91, 862 (2017)

    Article  CAS  Google Scholar 

  75. N. Noorani, H. Rahemi, S.F. Tayyari, J. Iran. Chem. Soc. 7, 934 (2010)

    Article  CAS  Google Scholar 

  76. M. Rubinstein, R.H. Kodama, S.A. Makhlouf, J. Magn. Magn. Mater. 234, 289 (2001)

    Article  CAS  ADS  Google Scholar 

  77. J. Krzystek, J.H. Park, M.W. Meisel, M.A. Hitchma, H. Stratemeier, L.C. Brunel, J. Telser, Inorg. Chem. 41, 4478 (2002)

    Article  CAS  PubMed  Google Scholar 

  78. Y. Kathiraser, W. Thitsartarn, K. Sutthiumporn, S. Kawi, J. Phys. Chem. C 117, 8120 (2013)

    Article  CAS  Google Scholar 

  79. D. Homsi, S. Aouad, C. Gennequin, A. Aboukaïs, E. Abi-Aad, Int. J. Hydrog. Energy 39, 10101 (2014)

    Article  CAS  Google Scholar 

  80. R.F. Howe, E.K. Gibson, C.R.A. Catlow, A. Hameed, J. McGregor, P. Collier, S.F. Parker, D. Lennon, Faraday Discuss. 197, 447 (2017)

    Article  PubMed  ADS  Google Scholar 

  81. N.D. Charisiou, K.N. Papageridis, G. Siakavelas, L. Tzounis, K. Kousi, M.A. Baker, S.J. Hinder, V. Sebastian, K. Polychronopoulou, M.A. Goula, Top. Catal. 60, 1226 (2017)

    Article  CAS  Google Scholar 

  82. F. Ferreira Madeira, K. Ben Tayeb, L. Pinard, H. Vezin, S. Maury, N. Cadran, Appl. Catal. A Gen. 443–444, 171 (2012)

    Article  Google Scholar 

  83. M.K.G. Abbas, S. Ramesh, S.F.H. Tasfy, K.Y.S. Lee, Mater. Today Commun. 37, 106964 (2023)

    Article  CAS  Google Scholar 

  84. Z. Sktani, A. Arab, Int. J. Refract. Met. Hard Mater. Alumina A Rev. (2022).

  85. R.M. German, Æ.P. Suri, Æ.S. Jin, J Mater Sci (2009) 1.

  86. N.M. Eagan, M.D. Kumbhalkar, J.S. Buchanan, J.A. Dumesic, G.W. Huber, Nat. Rev. Chem. 3, 223 (2019)

    Article  CAS  Google Scholar 

  87. S. Hanukovich, A. Dang, P. Christopher, ACS Catal. 9, 3537 (2019)

    Article  CAS  Google Scholar 

  88. J.F. DeWilde, C.J. Czopinski, A. Bhan, ACS Catal. 4, 4425 (2014)

    Article  CAS  Google Scholar 

  89. G. Busca, Phys. Chem. Chem. Phys. 1, 723 (1999)

    Article  CAS  Google Scholar 

  90. S.G. Chuklina, A.I. Pylinina, L.I. Podzorova, N.A. Mikhailina, I.I. Mikhalenko, Russ. J. Phys. Chem. A 90, 2370 (2016)

    Article  CAS  Google Scholar 

  91. K.I. Shimizu, K. Kon, K. Shimura, S.S.M.A. Hakim, J. Catal. 300, 242 (2013)

    Article  CAS  Google Scholar 

  92. S. Jin, Z. Xiao, C. Li, X. Chen, L. Wang, J. Xing, W. Li, C. Liang, Catal. Today (2014).

  93. W.H. Cassinelli, L. Martins, A.R. Passos, S.H. Pulcinelli, A. Rochet, V. Briois, C.V. Santilli, ChemCatChem 7, 1668 (2015)

    Article  CAS  Google Scholar 

  94. A.G. Sato, D.P. Volanti, D.M. Meira, S. Damyanova, E. Longo, J.M.C. Bueno, J. Catal. 307, 1 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RSF, project number № 23-29-00369. The authors acknowledge support from Lomonosov Moscow State University Program of Development for providing access to the EPR and Raman spectroscopy spectrometers (MSU Chemistry Department “Nano-chemistry and Nanomaterials” Equipment Center). The authors express their gratitude to the D.I. Mendeleev Center for the collective use of scientific equipment for assistance in carrying out ICP research. The authors express their gratitude to Vladimir Volkov (Shubnikov Institute of Crystallography, Russian Academy of Sciences) for assistance in carrying out SAXS research.

Funding

This work was supported by the RSF, project number № 23-29-00369.

Author information

Authors and Affiliations

Authors

Contributions

AZ supervision, conceptualization, methodology, formal analysis, investigations, data curation, writing—review and editing, resources; SC investigations, data curation, writing—review and editing; YF: methodology, formal analysis, investigations, data curation, writing—review; NV methodology, formal analysis, investigations, data curation; AS: investigations; IM: writing—review; DZ: investigations, writing—review; OI: investigations, writing—review; AF: methodology, formal analysis, investigations, data curation, writing—review; AI:, investigations, data curation, writing—review. All authors reviewed and agreed the manuscript.

Corresponding author

Correspondence to Anna Zhukova.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no competing interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4539 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, A., Chuklina, S., Fionov, Y. et al. Enhanced ethanol dehydrogenation over Ni-containing zirconia-alumina catalysts with microwave-assisted synthesis. Res Chem Intermed 50, 1331–1354 (2024). https://doi.org/10.1007/s11164-023-05174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05174-5

Keywords

Navigation