Skip to main content
Log in

Supported rhodium with low loading in nanoparticles-catalyzed azidolysis of epoxides: optimization of efficient parameters using response surface methodology

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, we examined the catalytic role of low rhodium embedded onto MOF-5 as a hard template, in the ring opening reaction of epoxides with N3 anion as nucleophile. The material was characterized by SEM, TEM, FT-IR, XRD, EDAX, BET, H2-TPR, and AAS techniques. Furthermore, we used BBD and RSM to obtain the optimum reaction conditions, which was 2.25% of Rh loading, 0.05 g amount of the catalyst, and 60 min reaction time at a temperature of 45 °C. The prepared catalyst demonstrated high activity, easy recovery and efficient recyclability with no leaching of Rh in the azidolysis of epoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Bates, Introduction, Organic Synthesis Using Transition Metals (Wiley, Hoboken, 2012), p. 1

    Book  Google Scholar 

  2. P.A. Evans, Modern Rhodium-Catalyzed Organic Reactions (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  3. D. Bonincontro, E.A. Quadrelli, CO2 reduction reactions by rhodium-based catalysts, in Rhodium Catalysis, ed. by C. Claver (Springer, Cham, 2018), p. 263

    Google Scholar 

  4. G. Song, F. Wang, X. Li, Chem. Soc. Rev. 41, 3651 (2012)

    Article  CAS  Google Scholar 

  5. C. Li, W. Wang, L. Yan, Y. Ding, Front. Chem. Sci. Eng. 12, 113 (2018)

    Article  CAS  Google Scholar 

  6. D.A. Colby, R.G. Bergman, J.A. Ellman, Chem. Rev. 110, 624 (2010)

    Article  CAS  Google Scholar 

  7. H.J. Edwards, J.D. Hargrave, S.D. Penrose, C.G. Frost, Chem. Soc. Rev. 39, 2093 (2010)

    Article  CAS  Google Scholar 

  8. M. Kooti, E. Nasiri, Appl. Organometal. Chem. 33, e4886 (2019)

    Article  Google Scholar 

  9. O.M. Yaghi, M.J. Kalmutzki, C.S. Diercks, Introduction to Reticular Chemistry (Wiley, Hoboken, 2019)

    Book  Google Scholar 

  10. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 1230444 (2013)

    Article  Google Scholar 

  11. A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Nat. Rev. Mater. 3, 15018 (2016)

    Article  Google Scholar 

  12. A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 44, 6804 (2015)

    Article  CAS  Google Scholar 

  13. J.B. DeCoste, G.W. Peterson, Chem. Rev. 114, 5695 (2014)

    Article  CAS  Google Scholar 

  14. A. Kirchon, L. Feng, H.F. Drake, E.A. Joseph, H.C. Zhou, Chem. Soc. Rev. 47, 8611 (2018)

    Article  CAS  Google Scholar 

  15. H. García, S. Navalón (eds.), Metal–Organic Frameworks: Applications in Separations and Catalysis (Wiley, Hoboken, 2018)

    Google Scholar 

  16. Y.Z. Chen, R. Zhang, L. Jiao, H.L. Jiang, Coord. Chem. Rev. 362, 1 (2018)

    Article  CAS  Google Scholar 

  17. V. Pascanu, G. González Miera, A.K. Inge, B. Martín-Matute, J. Am. Chem. Soc. 141, 7223 (2019)

    Article  CAS  Google Scholar 

  18. L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30, 1703663 (2018)

    Article  Google Scholar 

  19. D. Yang, B.C. Gates, ACS. Catal. 9, 1779 (2019)

    Article  CAS  Google Scholar 

  20. M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 539, 76 (2016)

    Article  CAS  Google Scholar 

  21. M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, Z. Tang, J. Am. Chem. Soc. 136, 1738 (2014)

    Article  CAS  Google Scholar 

  22. M. Fallah-Mehrjardi, A.R. Kiasat, K. Niknam, J. Iran. Chem. Soc. 15, 2033 (2018)

    Article  CAS  Google Scholar 

  23. J. Afsar, M.A. Zolfigol, A. Khazaei, Chem. Sel. 3, 11134 (2018)

    Google Scholar 

  24. H.Y. Wang, K. Huang, M. De Jesús, S. Espinosa, L.E. Piñero-Santiago, C.L. Barnes, M. Ortiz-Marciales, Tetrahedron Asymm. 27, 91 (2016)

    Article  CAS  Google Scholar 

  25. M. An, W. Liu, X. Zhou, R. Ma, H. Wang, B. Cui, W. Han, N. Wan, Y. Chen, RSC Adv. 9, 16418 (2019)

    Article  CAS  Google Scholar 

  26. A.R. Kiasat, M. Daei, S.J. Saghanezhad, Res. Chem. Intermed. 42, 581 (2016)

    Article  CAS  Google Scholar 

  27. J.H. Schrittwieser, F. Coccia, S. Kara, B. Grischek, W. Kroutil, N. d’Alessandro, F. Hollmann, Green Chem. 15, 3318 (2013)

    Article  CAS  Google Scholar 

  28. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré, J. Mater. Chem. 16, 626 (2006)

    Article  CAS  Google Scholar 

  29. A.R. Kiasat, R. Badri, B. Zargar, S. Sayyah, J. Org. Chem. 73, 8382 (2008)

    Article  CAS  Google Scholar 

  30. S. Sayyahi, S. Mozafari, S.J. Saghanezhad, Res. Chem. Intermed. 42, 511 (2016)

    Article  CAS  Google Scholar 

  31. A. Nemati-Chelavi, V. Zare-Shahabadi, S. Sayyahi, H. Anaraki-Ardakani, Res. Chem. Intermed. 46, 445 (2020)

    Article  CAS  Google Scholar 

  32. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Rajabi, Dalton Trans. 44, 14707 (2015)

    Article  CAS  Google Scholar 

  33. A. Mohammadzadeh, M. Ramezani, A. Niazi, Desalin. Water Treat. 57, 9745 (2016)

    Article  CAS  Google Scholar 

  34. H. Naeimi, V. Nejadshafiee, S. Masoum, RSC Adv. 5, 15006 (2015)

    Article  CAS  Google Scholar 

  35. H.A. Rafiee-Pour, M. Nejadhosseinian, M. Firouzi, S. Masoum, New J. Chem. 43, 593 (2019)

    Article  CAS  Google Scholar 

  36. J. Liu, O. Salmela, J. Sarkka, J.E. Morris, P.E. Tegehall, C. Andersson, Reliability of Microtechnology: Interconnects, Devices and Systems (Springer, Cham, 2011)

    Book  Google Scholar 

  37. A.J. Garratt-Reed, D.C. Bell, Energy dispersive X-ray analysis in the electron microscope. Bios (2003). https://doi.org/10.1002/sca.4950250309

  38. J. Hafizovic, M. Bjørgen, U. Olsbye, P.D. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, J. Am. Chem. Soc. 129, 3612 (2007)

    Article  CAS  Google Scholar 

  39. L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao, Y. Yan, Microporous Mesoporous Mater. 58, 105 (2003)

    Article  CAS  Google Scholar 

  40. N.T.S. Phan, K.K.A. Le, T.D. Phan, Appl. Catal. A 382, 246 (2010)

    Article  CAS  Google Scholar 

  41. H. Naeimi, V. Nejadshafiee, S. Masoum, Appl. Organometal. Chem. 29, 314 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the Mahshahr Branch, Islamic Azad University for its financial support. Also, the authors are grateful to Dr. N. Taheri and Dr. S. J. Saghanezhad for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sayyahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, A., Sayyahi, S., Zare-Shahabadi, V. et al. Supported rhodium with low loading in nanoparticles-catalyzed azidolysis of epoxides: optimization of efficient parameters using response surface methodology. Res Chem Intermed 46, 3397–3411 (2020). https://doi.org/10.1007/s11164-020-04152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04152-5

Keywords

Navigation