Skip to main content
Log in

Nucleophilic ring-opening of epoxides: trends in β-substituted alcohols synthesis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The present review deals with the ring-opening of epoxides by various carbon, nitrogen, oxygen, halogen, and sulfur-containing nucleophiles, which most of the resulting products are versatile intermediates in the synthesis of various biologically active compounds. The regioselectivity and environmentally benign nature of procedures for the synthesis of similar products have been also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93
Scheme 94
Scheme 95
Scheme 96
Scheme 97
Scheme 98
Scheme 99
Scheme 100
Scheme 101
Scheme 102
Scheme 103
Scheme 104
Scheme 105
Scheme 106
Scheme 107
Scheme 108
Scheme 109
Scheme 110
Scheme 111
Scheme 112
Scheme 113
Scheme 114
Scheme 115
Scheme 116
Scheme 117
Scheme 118
Scheme 119
Scheme 120
Scheme 121
Scheme 122
Scheme 123
Scheme 124
Scheme 125
Scheme 126
Scheme 127
Scheme 128
Scheme 129
Scheme 130
Scheme 131
Scheme 132
Scheme 133
Scheme 134
Scheme 135
Scheme 136
Scheme 137
Scheme 138
Scheme 139
Scheme 140
Scheme 141
Scheme 142
Scheme 143

Similar content being viewed by others

References

  1. E.J. Corey, S. Shibata, R.K. Bakshi, An efficient and catalytically enantioselective route to (S)-(−)-phenyloxirane. J. Org. Chem. 53, 2861–2863 (1988)

    Article  CAS  Google Scholar 

  2. J. Schubert, R. Schwesinger, H. Prinzbach, Total synthesis of a fortimicin aglycone. Angew. Chem. Int. Ed. Engl. 23, 167–169 (1984)

    Article  Google Scholar 

  3. S.U. Sonavane, M. Chidambaram, S. Khalil, J. Almog, Y. Sasson, Synthesis of cyclic disulfides using didecyldimethylammonium bromide as phase transfer catalyst. Tetrahedron Lett. 49, 520–522 (2008)

    Article  CAS  Google Scholar 

  4. J.G. Badiang, J. Aube, One-step conversion of aldehydes to oxazolines and 5,6-dihydro-4H-1,3-oxazines using 1,2- and 1,3-azido alcohols. J. Org. Chem. 61, 2484–2487 (1996)

    Article  CAS  Google Scholar 

  5. B.T. Smith, V. Gracias, J. Aubé, Regiochemical studies of the ring expansion reactions of hydroxy azides with cyclic ketones. J. Org. Chem. 65, 3771–3774 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. E.F.V. Scriven, K. Turnbull, Azides: their preparation and synthetic uses. Chem. Rev. 88, 297–368 (1988)

    Article  CAS  Google Scholar 

  7. S. Patai, The chemistry of the azido group (Wiley, New York, 1971)

    Google Scholar 

  8. D.E. Orr, Synthesis of acylated enamino esters. Synthesis, 618–619 (1984)

  9. H.B. Mereyala, B. Frei, Preparation of vicinal azidohydrins by reaction of oxiranes with triethylaluminium/hydrogen azide. Helv. Chim. Acta 69, 415–418 (1986)

    Article  CAS  Google Scholar 

  10. S.W. Chen, S.S. Thakur, W. Li, C.K. Shin, R.B. Kawthekar, G.J. Kim, Efficient catalytic synthesis of optically pure 1,2-azido alcohols through enantioselective epoxide ring opening with HN3. J. Mol. Catal. A Chem. 259, 116–120 (2006)

    Article  CAS  Google Scholar 

  11. S. Saito, S. Yamashita, T. Nishikawa, Y. Yokoyama, Highly nucleophillc tributyltin azide in oxirane ring cleavage leading to 1,2-azido alcohols. Tetrahedron Lett. 30, 4153–4156 (1989)

    Article  CAS  Google Scholar 

  12. S. Saito, T. Nishikawa, Y. Yokoyama, T. Moriwake, Efficient nucleophilic oxirane ring cleavage with dibutyltin diazide. Tetrahedron Lett. 31, 221–224 (1990)

    Article  CAS  Google Scholar 

  13. F. Benedetti, F. Berti, S. Norbedo, Regio- and stereoselective ring opening of 2,3-epoxyalcohols with diethylaluminium azide. Tetrahedron Lett. 39, 7971–7974 (1998)

    Article  CAS  Google Scholar 

  14. P. Crotti, V. Di Bussolo, L. Favero, F. Macchia, M. Pineschi, A novel effective transition metal based salt-catalyzed azidolysis of 1,2-epoxides. Tetrahedron Lett. 37, 1675–1678 (1996)

    Article  CAS  Google Scholar 

  15. L. Birkofer, P. Wegner, Trimethylsilyl azide. Org. Synth. 50, 107–110 (1970)

    Article  CAS  Google Scholar 

  16. M. Hayashi, K. Kohmura, N. Oguni, Asymmetric ring opening of symmetrical epoxides with trimethylsilyl azide using chiral titanium complexes. Synlett, 774–776 (1991)

  17. M. Meguro, N. Asao, Y. Yamamoto, Ytterbium triisopropoxide catalysed ring opening of epoxides with trimethylsilyl azide. J. Chem. Soc. Chem. Commun., 1021–1022 (1995)

  18. B. Karl, J.L. Hansen, A. Leighton, E.N. Jacobsen, On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen)CrIII complexes. J. Am. Chem. Soc. 118, 10924–10925 (1996)

    Article  Google Scholar 

  19. A. Kamal, M. Arifuddin, M.V. Rao, Enantioselective ring opening of epoxides with trimethylsilyl azide (TMSN3) in the presence of β-cyclodextrin: an efficient route to 1,2-azido alcohols. Tetrahedron Asymmetry, 4261–4264 (1999)

  20. C. Schneider, Quaternary ammonium salt catalyzed azidolysis of epoxides with trimethylsilyl azide. Synlett, 1840–1842 (2000)

  21. H. Konno, E. Toshiro, N. Hinoda, An epoxide ring-opening reaction via hypervalent silicate intermediate: synthesis of statine. Synthesis, 2161–2164 (2003)

  22. A.R. Kiasat, S. Nazari, Application of β-cyclodextrin-polyurethane as a stationary microvessel and solid-liquid phase-transfer catalyst: preparation of benzyl cyanides and azides in water. Catal. Commun. 18, 102–105 (2012)

    Article  CAS  Google Scholar 

  23. S.H. Park, Acceleration of azidation by microwave irradiation. Bull. Korean Chem. Soc. 24, 253–255 (2003)

    Article  CAS  Google Scholar 

  24. A.R. Hajipour, A. Rajaei, A.E. Ruoho, A mild and efficient method for preparation of azides from alcohols using acidic ionic liquid [H-NMP]HSO4. Tetrahedron Lett. 50, 708–711 (2009)

    Article  CAS  Google Scholar 

  25. A.R. Kiasat, S. Nazari, Synthesis, characterization and application of β-cyclodextrin-silica nanocomposite as potential microvessel in nucleophilic substitution reaction of phenacyl halides. J. Incl. Phenom. Macrocycl. Chem. 77, 429–438 (2013)

    Article  CAS  Google Scholar 

  26. S. Faiz, A.F. Zahoor, N. Rasool, M. Yousaf, A. Mansha, M. Zia-Ul-Haq, H.Z.E. Jaafar, Synthesis and consecutive reactions of α-azido ketones: a review. Molecules 20, 14699–14745 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. M. Onaka, K. Sugita, Y. Izumi, Solid-supported sodium azide reagents: their preparation and reactions with epoxides. J. Org. Chem. 54, 1116–1123 (1989)

    Article  CAS  Google Scholar 

  28. B. Tamami, N. Iranpoor, R. Rezaie, Synthesis of azidohydrins, nitrohydrins and nitratohydrins from epoxides using azide, nitrite and nitrate exchange resins. Iran. Polym. J. 13, 495–501 (2004)

    CAS  Google Scholar 

  29. M. Chini, P. Crotti, F. Macchia, Efficient metal salt catalyzed azidolysis of epoxides with sodium azide in acetonitrile. Tetrahedron Lett. 31, 5641–5644 (1990)

    Article  CAS  Google Scholar 

  30. N. Iranpoor, F. Kazemi, Regioselective azidolysis of epoxides catalyzed with Ce(IV). Synth. Commun. 29, 561–566 (1999)

    Article  CAS  Google Scholar 

  31. F. Kazemi, A.R. Kiasat, S. Ebrahimi, Regioselective azidolysis of epoxides catalyzed with LiBF4. Synth. Commun. 33, 999–1004 (2003)

    Article  CAS  Google Scholar 

  32. G. Sabitha, R.S. Babu, M. Rajkumar, J.S. Yadav, Cerium(III) chloride promoted highly regioselective ring opening of epoxides and aziridines using NaN3 in acetonitrile: a facile synthesis of 1,2-azidoalcohols and 1,2-azidoamines. Org. Lett. 4, 343–345 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. K. Bhaumik, U.W. Mali, K.G. Akamanchi, High yield regioselective ring opening of epoxides using samarium chloride hexahydrate. Synth. Commun. 33, 1603–1610 (2003)

    Article  CAS  Google Scholar 

  34. B. Tamami, H. Mahdavi, Synthesis of azidohydrins from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new polymeric phase-transfer catalyst. Tetrahedron Lett. 42, 8721–8724 (2001)

    Article  CAS  Google Scholar 

  35. A.R. Kiasat, R. Badri, B. Zargar, S. Sayyahi, Poly(ethylene glycol) grafted onto dowex resin: an efficient, recyclable, and mild polymer-supported phase transfer catalyst for the regioselective azidolysis of epoxides in water. J. Org. Chem. 73, 8382–8385 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. A.R. Kiasat, R. Mirzajani, H. Shalbaf, T. Tabatabaei, M. Fallah-mehrjardi, Green regioselective azidolysis of epoxides catalyzed by multi-site phase-transfer catalyst. J. Chin. Chem. Soc. 56, 594–599 (2009)

    Article  CAS  Google Scholar 

  37. A.R. Kiasat, F. Ataeian, M. Fallah-mehrjardi, B-podands as efficient catalysts for the ring opening of epoxides in water: a versatile and atom economical method for the synthesis of vicinal azidoalcohols. Iran. J. Catal 2, 1–5 (2012)

    CAS  Google Scholar 

  38. A.R. Kiasat, N. Ayashi, M. Fallah-Mehrjardi, Greener and facile aqueous regioselective synthesis of vicinal azidoalcohols using silica-bound 3-((polyethyleneglycol)ethyl)-8-methyl-1H-imidazol-3-ium bromide as a recyclable catalyst. J. Iran. Chem. Soc. 10, 1175–1181 (2013)

    Article  CAS  Google Scholar 

  39. B. Mombeni Godajdar, S. Mombeni, Polyethylene glycol functionalized magnetic dicationic ionic liquids as a novel catalyst and their application in ring opening of epoxides in water. J. Chin. Chem. Soc. 62, 404–411 (2015)

    Article  CAS  Google Scholar 

  40. A.R. Kiasat, F. Chadorian, S.J. Saghanezhad, Synthesis and characterization of a novel Fe3O4@SiO2/bipyridinium dichloride nanocomposite and its application as a magnetic and recyclable phase-transfer catalyst in the preparation of β-azidoalcohols, β-cyanohydrins, and β-acetoxy alcohols. C. R. Chim. 18, 1297–1306 (2015)

    Article  CAS  Google Scholar 

  41. A.R. Kiasat, M. Daei, S.J. Saghanezhad, Synthesis and characterization of a novel nano-Fe3O4-copoly[(styrene/acrylic acid)/grafted ethylene oxide and its application as a magnetic and recyclable phase-transfer catalyst in the preparation of β-azido alcohols and β-nitro alcohols. Res. Chem. Intermed. 42, 581–594 (2016)

    Article  CAS  Google Scholar 

  42. E. Rezaee Nezhad, E. Pourmalekshahi, Si-Imidazole-HSO4 functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for the regioselective ring opening of epoxides in water. Nanotechnol. Chem. Res. 1, 108–117 (2016)

    Google Scholar 

  43. J.H.L. Spelberg, J.E.T.H. Van Vlieg, L. Tang, D.B. Janssen, R.M. Kellogg, Highly enantioselective and regioselective biocatalytic azidolysis of aromatic epoxides. Org. Lett. 3, 41–43 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. D.B. Janssen, M. Majeri, G. Hasnaoui, B. Hauer, J.H.L. Spelberg, Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases. Biochem. Soc. Trans. 34, 291–295 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. G. Sabitha, R.S. Babu, M.S. Reddy, J.S. Yadav, Ring opening of epoxides and aziridines with sodium azide using oxone® in aqueous acetonitrile: a highly regioselective azidolysis reaction. Synthesis 2254–2258 (2002)

  46. A.R. Kiasat, F. Kazemi, Silica gel promoted highly regioselective ring opening of epoxides using NaN3 under solvent free conditions. Phosphorus Sulfur Silicon 178, 2387–2392 (2003)

    Article  CAS  Google Scholar 

  47. N. Iranpoor, H. Firouzabadi, M. Shekarize, Micellar media for the efficient ring opening of epoxides with CN, N3 , NO3 , NO2 , SCN, Cl and Br catalyzed with Ce(OTf)4. Org. Biomol. Chem. 1, 724–727 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. B. Tamami, M. Kolahdoozan, H. Mahdavi, Regioselective azidolysis of epoxides in water using poly(vinylamine) and poly(allylamine) as new polymeric cosolvents. Iran. Polym. J. 13, 21–28 (2004)

    CAS  Google Scholar 

  49. J. Boruwa, J.C. Borah, B. Kalita, N.C. Barua, Highly regioselective ring opening of epoxides using NaN3: a short and efficient synthesis of (−)-cytoxazone. Tetrahedron Lett. 45, 7355–7358 (2004)

    Article  CAS  Google Scholar 

  50. B. Yadollahi, H. Danafar, A facile synthesis of 1,2-azidoalcohols by (TBA)4PFeW11O39·3H2O-catalyzed azidolysis of epoxides with NaN3. Catal. Lett 113, 120–123 (2007)

    Article  CAS  Google Scholar 

  51. B. Das, V.S. Reddy, M. Krishnaiah, Y.K. Rao, Highly regio- and stereoselective ring-opening of epoxides and aziridines with sodium azide using ammonium-12-molybdophosphate. J. Mol. Catal. A Chem 270, 89–92 (2007)

    Article  CAS  Google Scholar 

  52. F. Ebrahimzadeh, R. Rooydell, Poly(N-bromoacrylamide) as highly efficient, regioselective and recyclable catalyst for preparation of β-azidoalcohols, β-cyanoalcohols, β-nitroalcohols and β-nitratoalcohols from epoxides under aqueous conditions. Der Chem. Sin. 3, 1146–1152 (2012)

    CAS  Google Scholar 

  53. J.S. Yadav, B.V.S. Reddy, B. Jyothirmai, M.S.R. Murty, Ionic liquids/H2O systems for the reaction of epoxides with NaN3: a new protocol for the synthesis of 2-azidoalcohols. Tetrahedron Lett. 46, 6559–6562 (2005)

    Article  CAS  Google Scholar 

  54. A.A. Chaugule, A.H. Tamboli, F.A. Sheikh, W.J. Chung, H. Kim, Glycerol functionalized imidazolium tri-cationic room temperature ionic liquids: synthesis, properties and catalytic performance for 2-azidoalcohol synthesis from epoxide. J. Mol. Liq. 208, 314–321 (2015)

    Article  CAS  Google Scholar 

  55. A.R. Kiasat, M. Fallah-Mehrjardi, An efficient catalyst-free ring opening of epoxides in PEG-300: a versatile method for the synthesis of vicinal azidoalcohols. J. Iran. Chem. Soc. 6, 542–546 (2009)

    Article  CAS  Google Scholar 

  56. A.A. Newman, Chemistry and biochemistry of thiocyanic acid and its derivatives (Academic, New York, 1975)

    Google Scholar 

  57. Y. Gao, K.B. Sharpless, Vicinal diol cyclic sulfates Like epoxides only more reactive. J. Am. Chem. Soc. 110, 7538–7539 (1988)

    Article  CAS  Google Scholar 

  58. E.E. Tamelen, The formation and ring-opening of alkene sulfides. J. Am. Chem. Soc. 73, 3444–3448 (1951)

    Article  Google Scholar 

  59. Y. Tamura, H. Yasuda, N. Gohda, Y. Kita, Reaction of epoxides with triphenylphosphine–thiocyanogen (TPPT): preparation of α-thiocyanatovinyl ketones, vic-dithiocyanates, and vic-dithiocyanatohydrins. J. Chem. Soc. Perkin Trans. 1, 1577–1581 (1981)

    Article  Google Scholar 

  60. B.M. Choudary, S.S. Rani, M.L. Kantam, Selective nucleophilic openings of 2,3-epoxy alcohols catalyzed by Pd(PPh3)4. Synth. Commun 20, 2313–2317 (1990)

    Article  CAS  Google Scholar 

  61. C. Najera, J.M. Sansano, β,γ-Efoxy sulfones in organic synthesis. Part 2: preparation of β,γ-bifunctionalized sulfones. Tetrahedron 47, 5193–5202 (1991)

    Article  CAS  Google Scholar 

  62. Y. Tanabe, K. Mori, Y. Yoshida, Mild, effective and regioselective ring-opening of oxiranes using several thiosilanes promoted by tetrabutylammonium fluoride as catalyst. J. Chem. Soc. Perkin Trans. 1, 671–676 (1997)

    Article  Google Scholar 

  63. A. Olszewski-ortar, P. Gros, Y. Fort, Selective ring-opening of ω-epoxyalkyl (meth)acrylates. An efficient access to bifunctional monomers. Tetrahedron Lett. 38, 8699–8702 (1997)

    Article  CAS  Google Scholar 

  64. N. Iranpoor, G.A. Kohmareh, DDQ catalyses the conversion of epoxides to β-hydroxy thiocyanates with NH4SCN. Phosphorus Sulfur Silicon 152, 135–139 (1999)

    Article  CAS  Google Scholar 

  65. J.S. Yadav, B.V.S. Reddy, C.S. Reddy, Selectfluor™: a novel and efficient reagent for the synthesis of β-hydroxy thiocyanates. Tetrahedron Lett. 45, 1291–1293 (2004)

    Article  CAS  Google Scholar 

  66. X. Chen, H. Wu, R. Xu, M. Liu, J. Ding, W. Su, Gallium trichloride–promoted highly regioselective ring opening of epoxides with NH4SCN and NaN3 in water. Synth. Commun. 38, 1855–1865 (2008)

    Article  CAS  Google Scholar 

  67. B. Tamami, H. Mahdavi, Synthesis of thiocyanohydrins from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new solid-liquid phase-transfer catalyst. Tetrahedron Lett. 43, 6225–6228 (2002)

    Article  CAS  Google Scholar 

  68. A.R. Kiasat, R. Mirzajani, H. Shalbaf, T. Tabatabaei, Nuclephilic ring opening of epoxides promoted by multi-site phase-transfer catalyst: an efficient and eco-friendly route to synthesis of β-hydroxy thiocyanate. Chin. Chem. Lett 20, 1025–1029 (2009)

    Article  CAS  Google Scholar 

  69. A.R. Kiasat, M. Fallah-Mehrjardi, PEG-SO3H as eco-friendly polymeric catalyst for regioselective ring opening of epoxides using thiocyanate anion in water: an efficient route to synthesis of β-hydroxy thiocyanate. Catal. Commun. 9, 1497–1500 (2008)

    Article  CAS  Google Scholar 

  70. A.R. Kiasat, M.F. Mehrjardi, PEG-SO3H as soluble acidic polymeric catalyst for regioselective ring opening of epoxides: a high-efficient synthetic approach to β-hydroxy thiocyanates. Synth. Commun. 38, 2995–3002 (2008)

    Article  CAS  Google Scholar 

  71. H. Sharghi, M.A. Nasseri, K. Niknam, Phenol-containing macrocyclic diamides as new catalysts in the highly regioselective conversion of epoxides to β-hydroxy thiocyanates. J. Org. Chem. 66, 7287–7293 (2001)

    Article  CAS  PubMed  Google Scholar 

  72. K. Niknam, Conversion of epoxides into 2-hydroxyethyl thiocyanates with NH4SCN in the presense of 2,6-bis[2-(o-amino phenoxy)methyl-4-bromo-1-methoxybenzene (BABMB) as catalyst. Phosphorus Sulfur Silicon 179, 499–506 (2004)

    Article  CAS  Google Scholar 

  73. H. Sharghi, M.A. Nasseri, A. Hasani Nejad, Efficient synthesis of β-hydroxy thiocyanates from epoxides and ammonium thiocyanates using tetraarylporphyrins as new catalysts. J. Mol. Catal. A Chem 206, 53–57 (2003)

    Article  CAS  Google Scholar 

  74. H. Sharghi, A. Hasani Nejad, Dichloro (5,10,15,20-tetraphenylporphyrin) phosphorus(V) chloride as a new catalyst for conversion of 1,2-epoxyethanes to 2-hydroxyethyl thiocyanates with ammonium thiocyanate. Phosphorus Sulfur Silicon 179, 2297–2305 (2004)

    Article  CAS  Google Scholar 

  75. H. Sharghi, A. Hasani Nejad, M.A. Nasseri, Metalloporphyrins as new catalysts in the highly regioselective conversion of epoxides to halohydrins with molecular halogen. New J. Chem 28, 946–951 (2004)

    Article  CAS  Google Scholar 

  76. A.R. Kiasat, M. Zayadi, M. Fallah-Mehrjardi, Regioselective ring opening of epoxides using NH4SCN/silica sulfuric acid: an efficient approach for the synthesis of β-hydroxy thiocyanate under solvent-free conditions. Chin. Chem. Lett 19, 665–668 (2008)

    Article  CAS  Google Scholar 

  77. A.R. Kiasat, M. Fallah-mehrjardi, Dowex as reusable acidic polymeric catalyst in the efficient and regioselective conversion of epoxides into b-hydroxy thiocyanates under solvent free conditions. J. Chin. Chem. Soc. 55, 1119–1124 (2008)

    Article  CAS  Google Scholar 

  78. A.R. Kiasat, M. Fallah-Mehrjardi, B(HSO4)3: a novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solvent-free conditions. J. Braz. Chem. Soc. 19, 1595–1599 (2008)

    Article  CAS  Google Scholar 

  79. A.R. Kiasat, A. Mouradzadegun, S. Elahi, M. Fallah-Mehrjardi, Al(HSO4)3/silica gel as a novel catalytic system for the ring opening of epoxides with thiocyanate anion under solvent-free conditions. Chin. Chem. Lett 21, 146–150 (2010)

    Article  CAS  Google Scholar 

  80. A.R. Kiasat, M. Fallah-Mehrjardi, Melamine sulfonic acid: a recoverable catalyst for the ecofriendly synthesis of thiocyanohydrins under solvent-free conditions. Synth. Commun. 40, 1551–1558 (2010)

    Article  CAS  Google Scholar 

  81. B. Mokhtari, R. Azadi, S. Rahmani-Nezhad, Application of N-thiocyanatosuccinimide as a reagent for the facile conversion of epoxides into thiocyanohydrines. Chin. Chem. Lett. 22, 21–24 (2011)

    Article  CAS  Google Scholar 

  82. R. Azadi, B. Mokhtari, H. Oghabi, Remarkably fast and mild solvent-free conversion of epoxides into thiocyanohydrins using Mukaiyama reagent. Phosphorus Sulfur Silicon 187, 1377–1382 (2012)

    Article  CAS  Google Scholar 

  83. F. Fulop, I. Huber, G. Bernath, H. Honig, P. Seufer-Wasserthal, Trans-2-cyanocycloalkanols: versatile synthons for alicyclic cis- and trans-1,3-amino alcohols. Synthesis, 43–46 (1991)

  84. W. Nagata, M. Yoshioka, T. Okumura, Cleavage of epoxides with hydrogen cyanide and triethylaluminium and with diethylaluminium cyanide. J. Chem. Soc., 2365–2377 (1970)

  85. A.E. Vougioukas, H.B. Kagan, Lanthanides as lewis-acid catalysts in aldol addition, cyanohydrin-forming and oxirane ring-opening reactions. Tetrahedron Lett. 28, 5513–5516 (1987)

    Article  CAS  Google Scholar 

  86. S. Matsubara, H. Onishi, K. Utimoto, Reaction of cyanotrimethylsilane with oxiranes under Yb(CN)3 catalysis. Tetrahedron Lett. 31, 6209–6212 (1990)

    Article  CAS  Google Scholar 

  87. M. Chini, P. Crotti, L. Favero, F. Macchia, Easy direct stereo- and regioselective formation of β-hydroxy nitriles by reaction of 1,2-epoxides with potassium cyanide in the presence of metal salts. Tetrahedron Lett. 32, 4775–4778 (1991)

    Article  CAS  Google Scholar 

  88. J.A. Ciaccio, C. Stanescu, J. Bontemps, Facile conversion of epoxides to β-hydroxy nitriles under anhydrous conditions with lithium cyanide. Tetrahedron Lett. 33, 1431–1434 (1992)

    Article  CAS  Google Scholar 

  89. A. Tsuruoka, S. Negi, M. Yanagisawa, K. Nara, T. Naito, Practical oxirane ring-opening with in situ prepared LiCN. synthesis of (2S,3R)-3-(2,4-difluorophenyl)-3-hydroxy-2-methyl-4-(1H-1,2,4-triazol-1-yl)-1-butanenitrile. Synth. Commun. 27, 3547–3557 (1997)

    Article  CAS  Google Scholar 

  90. J.A. Ciaccio, M. Smrtka, W.A. Maio, D. Rucando, Synthesis of β-hydroxy nitriles and 1,3-amino alcohols from epoxides using acetone cyanohydrin as a LiCN precursor. Tetrahedron Lett. 45, 7201–7204 (2004)

    Article  CAS  Google Scholar 

  91. D. Mitchell, T.M. Koenig, Regiospecific opening of 1,2-expoxides with acetone cyanohydrin under mildly basic conditions. Tetrahedron Lett. 33, 3281–3284 (1992)

    Article  CAS  Google Scholar 

  92. B. Tamami, N. Iranpoor, R. Rezaei, Highly regioselective conversion of epoxides to β-hydroxy nitriles with cyanide exchange resin. Synth. Commun. 33, 3153–3157 (2003)

    Article  CAS  Google Scholar 

  93. A.R. Kiasat, N. Ayashi, M. Fallah-Mehrjardi, Silica-bound 3-{2-[poly(ethylene glycol)ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide: a recoverable phase-transfer catalyst for smooth and regioselective conversion of oxiranes to β-hydroxynitriles in water. Helv. Chim. Acta 96, 275–279 (2013)

    Article  CAS  Google Scholar 

  94. A.R. Kiasat, S. Nazari, J. Davarpanah, Facile synthesis of an organic-inorganic nanocomposite, PEG-silica, by sol-gel method; its characterization and application as an efficient catalyst in regioselective nucleophilic ring opening of epoxides: preparation of β-azido alcohols and β-cyanohydrins. C. R. Chim. 17, 124–130 (2014)

    Article  CAS  Google Scholar 

  95. S. Yousefi, A.R. Kiasat, MCM-41 bound dibenzo-18-crown-6 ether: a recoverable phase-transfer nano catalyst for smooth and regioselective conversion of oxiranes to β-azidohydrins and β-cyanohydrins in water. RSC Adv. 5, 92387–92393 (2015)

    Article  CAS  Google Scholar 

  96. G. Li, H. Chang, K.B. Sharpless, Catalytic asymmetric aminohydroxylation (AA) of olefins. Angew. Chem. Int. Ed. Engl. 35, 451–454 (1996)

    Article  CAS  Google Scholar 

  97. D.J. Ager, I. Prakash, D.R. Schaad, 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–876 (1996)

    Article  CAS  PubMed  Google Scholar 

  98. C.W. Johannes, M.S. Visser, G.S. Weatherhead, A.H. Hoveyda, Zr-catalyzed kinetic resolution of allylic ethers and Mo-catalyzed chromene formation in synthesis enantioselective total synthesis of the antihypertensive agent (S,R,R,R)-nebivolol. J. Am. Chem. Soc. 120, 8340–8347 (1998)

    Article  CAS  Google Scholar 

  99. P. O’Brien, Sharpless asymmetric aminohydroxylation: scope, limitations, and use in synthesis. Angew. Chem. Int. Ed. Engl. 38, 326–329 (1999)

    Article  PubMed  Google Scholar 

  100. E.J. Corey, F. Zhang, re- and si-face-selective nitroaldol reactions catalyzed by a rigid chiral quaternary ammonium salt: a highly stereoselective synthesis of the HIV protease inhibitor amprenavir (Vertex 478). Angew. Chem. Int. Ed. Engl. 38, 1931–1934 (1999)

    Article  CAS  Google Scholar 

  101. L.E. Overman, L.A. Flippin, Facile aminolysis of epoxides with diethylaluminum amides. Tetrahedron Lett. 22, 195–198 (1981)

    Article  CAS  Google Scholar 

  102. A. Papini, A. Ricci, M. Taddei, Regiospecific conversion of oxiranes, oxetanes, and lactones into difunctional nitrogen compounds. J. Chem. Soc. Perkin Trans. 1, 2261–2265 (1984)

    Article  Google Scholar 

  103. M.C. Carre, J.P. Houmounou, P. Caubere, A convenient preparation of β-amino alcohols from epoxides and halomagnesium alkylamides. Tetrahedron Lett. 26, 3107–3110 (1985)

    Article  CAS  Google Scholar 

  104. J. Yamada, M. Yumoto, Y. Yamamoto, Aminolead compounds as a new reagent for regioselective ring-opening of epoxides. Tetrahedron Lett. 30, 4255–4258 (1989)

    Article  CAS  Google Scholar 

  105. R. Otoski, E. Salaski, Inexpensive reagents for the synthesis of amides from esters and for regioselective opening of epoxides. J. Org. Chem. 57, 5831–5834 (1992)

    Article  Google Scholar 

  106. Y. Yamamoto, M. Meguro, N. Tsukada, H. Nemoto, N. Sadayori, J. Gerald, H. Nakamura, Regio- and stereo-selective ring opening of epoxides with amide cuprate reagents. J. Chem. Soc. Chem. Commun., 1201–1203 (1993)

  107. C.E. Harris, G.B. Fisher, D. Beardsley, L. Lee, C.T. Goralski, L.W. Nicholson, B. Singaram, Boranes in synthesis. 6. A new synthesis of .beta.-amino alcohols from epoxides. Use of lithium amides and aminoborane catalysts to synthesize .beta.-amino alcohols from terminal and internal epoxides in high yield. J. Org. Chem. 59, 7746–7751 (1994)

    Article  CAS  Google Scholar 

  108. G. Sekar, V.K. Singh, An efficient method for cleavage of epoxides with aromatic amines. J. Org. Chem. 64, 287–289 (1999)

    Article  CAS  PubMed  Google Scholar 

  109. I. Cepanec, M. Litvic, H. Mikuldas, A. Bartolincic, V. Vinkovic, Calcium trifluoromethanesulfonate-catalysed aminolysis of epoxides. Tetrahedron 59, 2435–2439 (2003)

    Article  CAS  Google Scholar 

  110. D.B.G. Williams, M. Lawton, Aluminium triflate: an efficient recyclable Lewis acid catalyst for the aminolysis of epoxides. Tetrahedron Lett. 47, 6557–6560 (2006)

    Article  CAS  Google Scholar 

  111. N.R. Swamy, G. Kondaji, K. Nagaiah, Bi3+ catalyzed regioselective ring opening of epoxides with aromatic amines. Synth. Commun. 32, 2307–2312 (2002)

    Article  CAS  Google Scholar 

  112. H.F. Lu, L.L. Sun, W.J. Le, F.F. Yang, J.T. Zhou, Y.H. Gao, Efficient solvent-free aminolysis of epoxides under (C4H12N2)2[BiCl6Cl·H2O catalysis. Tetrahedron Lett. 53, 4267–4272 (2012)

    Article  CAS  Google Scholar 

  113. F. Mohsenzadeh, K. Aghapoor, H.R. Darabi, M.R. Jalali, M.R. Halvagar, Greener aminolysis of epoxides on BiCl3/SiO2. C. R. Chim. 19, 978–985 (2016)

    Article  CAS  Google Scholar 

  114. L.D. Pachon, P. Gamez, J.J.M. Brussel, J. Reedijk, Zinc-catalyzed aminolysis of epoxides. Tetrahedron Lett. 44, 6025–6027 (2003)

    Article  CAS  Google Scholar 

  115. J.R. Rodriguez, A. Navarro, Opening of epoxides with aromatic amines promoted by indium tribromide: a mild and efficient method for the synthesis of β-amino alcohols. Tetrahedron Lett. 45, 7495–7498 (2004)

    Article  CAS  Google Scholar 

  116. F. Carree, R. Gil, J. Collin, Samarium iodides catalyzed meso-epoxides ring opening by aromatic amines. Tetrahedron Lett. 45, 7749–7751 (2004)

    Article  CAS  Google Scholar 

  117. N.R. Swamy, T.V. Goud, S.M. Reddy, P. Krishnaiah, Y. Venkateswarlu, Zirconium(IV) chloride catalyzed ring opening of epoxides with aromatic amines. Synth. Commun. 34, 727–734 (2004)

    Article  CAS  Google Scholar 

  118. M.M. Mojtahed, M.S. Abaee, V. Hamidi, Efficient solvent-free aminolysis of epoxides and oxetanes under. Catal. Commun. 8, 1671–1674 (2007)

    Article  CAS  Google Scholar 

  119. K.S. Babu, B.C. Raju, S.P. Kumar, S.G. Mallur, S.V. Reddy, J.M. Rao, Tungstophosphoric acid (H3PW12O40)-catalyzed regioselective ring opening of epoxides with amines. Synth. Commun. 35, 879–885 (2005)

    Article  CAS  Google Scholar 

  120. A. Kamal, B.R. Prasad, A.M. Reddy, M.N.A. Khan, Sulfamic acid as an efficient and recyclable catalyst for the ring opening of epoxides with amines and anilines: an easy synthesis of β-amino alcohols under solvent-free conditions. Catal. Commun. 8, 1876–1880 (2007)

    Article  CAS  Google Scholar 

  121. A.K. Shah, M. Kumar, S.H.R. Abdi, R.I. Kureshy, N.H. Khan, H.C. Bajaj, Solvent-free aminolysis of aliphatic and aryloxy epoxides with sulfated zirconia as solid acid catalyst. Appl. Catal. A Gen. 486, 105–114 (2014)

    Article  CAS  Google Scholar 

  122. S.S. Shinde, M.S. Said, T.B. Surwase, P. Kumar, Mild regiospecific alcoholysis and aminolysis of epoxides catalyzed by zirconium(IV) oxynitrate. Tetrahedron Lett. 56, 5916–5919 (2015)

    Article  CAS  Google Scholar 

  123. R.V. Yarapathy, S. Mekala, B.V. Rao, S. Tammishetti, Polymer supported copper sulphate promoted aminolysis of epoxides with aromatic amines. Catal. Commun. 7, 466–471 (2006)

    Article  CAS  Google Scholar 

  124. J.K. Satyarthi, L. Saikia, D. Srinivas, P. Ratnasamy, Regio- and stereoselective synthesis of β-amino alcohols over titanosilicate molecular sieves. Appl. Catal. A Gen. 330, 145–151 (2007)

    Article  CAS  Google Scholar 

  125. M.W.C. Robinson, D.A. Timms, S.M. Williams, A.E. Graham, A mild and efficient synthesis of β-amino alcohols from epoxides using a mesoporous aluminosilicate catalyst. Tetrahedron Lett. 48, 6249–6251 (2007)

    Article  CAS  Google Scholar 

  126. M.W.C. Robinson, A.M. Davies, I. Mabbett, T.E. Davies, D.C. Apperley, S.H. Taylor, A.E. Graham, Synthesis of nanoporous aluminosilicate materials and their application as highly selective heterogeneous catalysts for the synthesis of β-amino alcohols. J. Mol. Catal. A. Chem. 329, 57–63 (2010)

    Article  CAS  Google Scholar 

  127. M.S. Abaee, V. Hamidi, M.M. Mojtahedi, Ultrasound promoted aminolysis of epoxides in aqueous media: a rapid procedure with no pH adjustment for additive-free synthesis of β-aminoalcohols. Ultrason. Sonochem. 15, 823–827 (2008)

    Article  CAS  PubMed  Google Scholar 

  128. S.S. Chimni, N. Bala, V.A. Dixit, P.V. Bharatam, Thiourea catalyzed aminolysis of epoxides under solvent free conditions. Electronic control of regioselective ring opening. Tetrahedron 66, 3042–3049 (2010)

    Article  CAS  Google Scholar 

  129. V.T. Kamble, N.S. Joshi, Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by cyanuric chloride under mild and solvent-free conditions. Green Chem. Lett. Rev. 3, 275–281 (2010)

    Article  CAS  Google Scholar 

  130. A. Murugan, V. Krishna, S. Bachu, M.R. Reddy, V. Torlikonda, S.G. Manjunatha, S. Ramasubramanian, S. Nambiar, G.P. Howell, J. Withnall, Regio-selective synthesis of 1,2-aminoalcohols from epoxides and chlorohydrins. Tetrahedron Lett. 53, 5739–5741 (2012)

    Article  CAS  Google Scholar 

  131. N. Aramesh, B. Yadollahi, V. Mirkhani, Fe(III) substituted Wells–Dawson type polyoxometalate: an efficient catalyst for ring opening of epoxides with aromatic amines. Inorg. Chem. Commun. 28, 37–40 (2013)

    Article  CAS  Google Scholar 

  132. C. Wang, H. Yamamoto, Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols. J. Am. Chem. Soc. 137, 4308–4311 (2015)

    Article  CAS  PubMed  Google Scholar 

  133. M.A. Zolfigol, A.R. Moosavi-Zare, M. Zarei, A. Zare, E. Noroozizadeh, R. Karamian, M. Asadbegy, Synthesis of β-phthalimido-alcohols via regioselective ring-opening of epoxide by using reusable basic magnetic nano particles and their biological investigation. RSC Adv. 6, 62460–62466 (2016)

    Article  CAS  Google Scholar 

  134. N. Ono, The nitro group in organic synthesis (Wiley, New York, 2001)

    Book  Google Scholar 

  135. D.J. Ager, I. Prakash, D.R. Schaad, 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–875 (1996)

    Article  CAS  PubMed  Google Scholar 

  136. G.A. Jacobs, J.A. Tino, R. Zahler, Synthesis of SQ-32,829, a new nucleoside antiviral agent. Tetrahedron Lett. 30, 6955–6958 (1989)

    Article  CAS  Google Scholar 

  137. D.M. Coe, P.L. Myers, D.M. Parry, S.M. Roberts, R. Storerb, Synthesis of compounds active against HIV. Part 2. Preparation of some 2′,3′-dideoxy-6′-fluorocarbocyclic nucleosides. J. Chem. Soc. Chem. Commun. 151–153 (1990)

  138. T. Suami, K. Tadano, A. Suga, Y. Ueno, An alternative synthesis of acosamine and ristosamine. J. Carbohydr. Chem. 3, 429–441 (1984)

    Article  CAS  Google Scholar 

  139. G. Hasnaoui, J.H.L. Spelberg, E. De Vries, L. Tang, B. Hauer, D.B. Janssen, Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium radiobacter AD1: a new tool for the kinetic resolution of epoxides. Tetrahedron Asymmetry 16, 1685–1692 (2005)

    Article  CAS  Google Scholar 

  140. B. Kalita, N.C. Barua, M. Bezbarua, G. Bez, Synthesis of 2-nitroalcohols by regioselective ring opening of epoxides with MgSO4/MeOH/NaNO2 system: a short synthesis of immunosuppressive agent FTY-720. Synlett, 1411–1414 (2001)

  141. J.C. Borah, S. Gogoi, J. Boruwa, N.C. Barua, LaCl3·7H2O-Promoted regioselective ring opening of epoxides using NaNO2 in ether–water system: a facile synthesis of 2-nitroalcohols. Synth. Commun. 35, 873–878 (2005)

    Article  CAS  Google Scholar 

  142. H. Mahdavi, B. Tamami, Synthesis of 2-nitroalcohols from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new polymeric phase transfer catalyst. React. Funct. Polym. 64, 179–185 (2005)

    Article  CAS  Google Scholar 

  143. R. Tamura, A. Kaminura, N. Ono, Displacement of aliphatic nitro groups by carbon and heteroatom nucleophiles. Synthesis, 423–434 (1991)

  144. N.S. Marans, R.P. Zelinski, 2-Nitratoethyl esters of acrylic, crotonic and methacrylic acids. J. Am. Chem. Soc. 72, 5330–5331 (1950)

    Article  CAS  Google Scholar 

  145. L. Nichols, B. Magnusson, J.D. Ingham, Synthesis of nitric esters by the addition of nitric acid to the ethylene oxide ring. J. Am. Chem. Soc. 75, 4255–4258 (1953)

    Article  CAS  Google Scholar 

  146. E. Mincione, F. Lanciano, Thallium nitrate as a reagent for the conversion of epoxides into α-hydroxynitrate esters and for the cleavage of aliphatic ethers. Tetrahedron Lett. 21, 1149–1150 (1980)

    Article  CAS  Google Scholar 

  147. N. Iranpoor, P. Salehi, Ceric ammonium nitrate: a mild and efficient reagent for conversion of epoxides to β-nitrato alcohols. Tetrahedron 51, 909–912 (1995)

    Article  CAS  Google Scholar 

  148. J.R. Hanson, T. Mickael, C. Uyanik, F. Viel, The stereochemistry of the cleavage of steroidal epoxides by ceric ammonium nitrate. J. Chem. Res., 118–119 (1998)

  149. N. Iranpoor, T. Taherain, Z. Movahedi, FeCl3·6H2O supported on SiO2 catalysed ring-opening of epoxides with alcohols, acetic acid, water, chloride, bromide and nitrate ions. Synthesis, 1473–1476 (1996)

  150. Z. Liu, R. Li, D. Yang, L. Wu, Ring opening of 2,3-epoxy phenyl ketones upon reaction with nitric oxide. Tetrahedron Lett. 45, 1565–1566 (2004)

    Article  CAS  Google Scholar 

  151. Y. Fan, X. Shang, Z. Liu, L. Wu, Regio- and diastereoselective ring-opening reaction of epoxides with nitric oxide. Synth. Commun. 36, 3149–3152 (2006)

    Article  CAS  Google Scholar 

  152. W. Wu, Q. Liu, Y. Shen, R. Li, L. Wu, Highly stereoselective syn-ring opening of enantiopure epoxides with nitric oxide. Tetrahedron Lett. 48, 1653–1656 (2007)

    Article  CAS  Google Scholar 

  153. T.K. Chakraborty, A.K. Chattopadhyay, R. Samanta, R.S. Ampapathi, Stereoselective construction of quaternary chiral centers using Ti(III)-mediated opening of 2,3-epoxy alcohols: studies directed toward the synthesis of penifulvins. Tetrahedron Lett. 51, 4425–4428 (2010)

    Article  CAS  Google Scholar 

  154. G.H. Posner, D.Z. Rogers, C.M. Kinzig, G.M. Gurria, Organic reactions at alumina surfaces. Displacement reactions effected by alcohols, thiols, and acetic acid on dehydrated alumina. Tetrahedron Lett. 16, 3597–3600 (1975)

    Article  Google Scholar 

  155. G.A. Olah, A.P. Fung, D. Meidar, Nafion-H-catalyzed hydration and methanolysis of epoxides. Synthesis, 280–282 (1981)

  156. J. Otera, Y. Ycshinaga, K. Hirakawa, Highly regioselective ring opening of epoxides with alcohols catalyzed by organotin phosphate condensates. Tetrahedron Lett. 26, 3219–3222 (1985)

    Article  CAS  Google Scholar 

  157. N. Iranpoor, I. Mohammadpour Baltork, 2,3-Dichloro-5,6-dicyano-p-benzoquinone, catalyst for alcoholysis of epoxides. Tetrahedron Lett. 31, 735–738 (1990)

    Article  CAS  Google Scholar 

  158. N. Iranpoor, I. Mohammadpoor-Baltork, Mild, efficient and selective opening of epoxides with alcohols catalyzed by ceric(IV) ammonium nitrate. Synth. Commun. 20, 2789–2797 (1990)

    Article  CAS  Google Scholar 

  159. N. Iranpoor, I. Mohammadpour Baltork, F. shiriny Zardaloo, Ceric ammonium nitrate, an efficient catalyst for mild and selective opening of epoxides in the presence of water thiols and acetic acid. Tetrahedron 47, 9861–9866 (1991)

    Article  CAS  Google Scholar 

  160. Y. Masaki, T. Miura, M. Ochiai, Alcoholysis of epoxides catalyzed by tetracyanoethylene. Synlett, 847–849 (1993)

  161. N. Iranpoor, F. Shiriny Zardaloo, Tris[trinitrato Ce(IV)paraperiodate, an efficient heterogeneous catalyst for alcoholysis, acetolysis, and hydrolysis of epoxides. Synth. Commun. 24, 1959–1969 (1994)

    Article  CAS  Google Scholar 

  162. B.M. Choudary, Y. Sudha, Fe3+-Montmorillonite: an efficient heterogeneous catalyst for highly regioselective alcoholysis of epoxides. Synth. Commun. 26, 2989–2992 (1996)

    Article  CAS  Google Scholar 

  163. P. Salehi, B. Seddighi, M. Irandoost, F.K. Behbahani, Ferric perchlorate: an efficient reagent for regio- and stereoselective alcoholysis and hydrolysis of epoxides. Synth. Commun. 30, 2967–2973 (2000)

    Article  CAS  Google Scholar 

  164. T. Weil, M. Kotke, C.M. Kleiner, P.R. Schreiner, Cooperative Brönsted acid-type organocatalysis: alcoholysis of styrene oxides. Org. Lett. 10, 1513–1516 (2008)

    Article  CAS  PubMed  Google Scholar 

  165. S.S. Kahandal, S.R. Kale, S.T. Disale, R.V. Jayaram, Sulphated yttria–zirconia as a regioselective catalyst system for the alcoholysis of epoxides. Catal. Sci. Technol 2, 1493–1499 (2012)

    Article  CAS  Google Scholar 

  166. R. Kore, R. Srivastava, B. Satpati, Highly efficient nanocrystalline zirconosilicate catalysts for the aminolysis, alcoholysis, and hydroamination reactions. ACS Catal. 3, 2891–2904 (2013)

    Article  CAS  Google Scholar 

  167. G.D. Yadav, S. Singh, Ring opening of epoxides with alcohols using Fe(Cp)2BF4 as catalyst. Tetrahedron Lett. 55, 3979–3983 (2014)

    Article  CAS  Google Scholar 

  168. S.M. Bruno, A.C. Gomes, T.S.M. Oliveira, M.M. Antunes, A.D. Lopes, A. Valente, I.S. Gonçalves, M. Pillinger, Catalytic alcoholysis of epoxides using metal-free cucurbituril-based solids. Org. Biomol. Chem. 14, 3873–3877 (2016)

    Article  CAS  PubMed  Google Scholar 

  169. F.K. Olia, S. Sayyahi, N. Taheri, An Fe3O4 nanoparticle-supported Mn(II)-azo Schiff complex acts as a heterogeneous catalyst in alcoholysis of epoxides. C. R. Chim. 20, 370–376 (2017)

    Article  CAS  Google Scholar 

  170. D.B.G. Williams, M. Lawton, Aluminium triflate: a remarkable Lewis acid catalyst for the ring opening of epoxides by alcohols. Org. Biomol. Chem. 3, 3269–3272 (2005)

    Article  CAS  PubMed  Google Scholar 

  171. C. Schneider, A.R. Sreekanth, E. Mai, Scandium-bipyridine-catalyzed enantioselective addition of alcohols and amines to meso-epoxides. Angew. Chem. Int. Ed. 43, 5691–5694 (2004)

    Article  CAS  Google Scholar 

  172. A. Tschop, A. Marx, A.R. Sreekanth, C. Schneider, Scandium-bipyridine-catalyzed, enantioselective alcoholysis of meso-epoxides. Eur. J. Org. Chem., 2318–2327 (2007)

  173. M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, L. Shariati, M. Babaghanbari, M. Zarea, Zirconyl triflate, [ZrO(OTf)2, as a new and highly efficient catalyst for ring-opening of epoxides. J. Iran. Chem. Soc. 6, 789–799 (2009)

    Article  Google Scholar 

  174. D. Jiang, T. Mallat, F. Krumeich, A. Baiker, Copper-based metal-organic framework for the facile ring-opening of epoxides. J. Catal. 257, 390–395 (2008)

    Article  CAS  Google Scholar 

  175. A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring-opening of epoxides. Chem. Eur. J. 16, 8530–8536 (2010)

    Article  CAS  PubMed  Google Scholar 

  176. Z. Xue, J. Jiang, M.-G. Ma, M.-F. Li, T. Mu, Gadolinium-based metal–organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustain. Chem. Eng 5, 2623–2631 (2017)

    Article  CAS  Google Scholar 

  177. P. Salehi, M. Dabiri, A. Zolfigol, A.B. Fard, Silica sulfuric acid; an efficient and reusable catalyst for regioselective ring opening of epoxides by alcohols and water. Phosphorus Sulfur Silicon 179, 1113–1121 (2004)

    Article  CAS  Google Scholar 

  178. P. Salehi, M.M. Khodaei, M.A. Zolfigol, A. Keyvan, Magnesium hydrogensulfate: a cheap and efficient catalyst for the conversion of epoxides into β-alkoxy alcohols, vicinal-diols, and thiiranes. Synth. Commun. 33, 3041–3048 (2003)

    Article  CAS  Google Scholar 

  179. A. Dhakshinamoorthy, M. Alvaro, P. Concepción, V. Fornés, H. Garcia, Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun. 48, 5443–5445 (2012)

    Article  CAS  Google Scholar 

  180. M. Mirza-Aghayan, M. Alizadeh, M. Molaee Tavana, R. Boukherroub, Graphite oxide: a simple and efficient solid acid catalyst for the ring-opening of epoxides by alcohols. Tetrahedron Lett. 55, 6694–6697 (2014)

    Article  CAS  Google Scholar 

  181. Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, MIL-101-SO3H: a highly efficient Brönsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem. Eur. J. 20, 14976–14980 (2014)

    Article  CAS  PubMed  Google Scholar 

  182. C. Moberg, L. Rákos, L. Tottie, Stereospecific Lewis acid catalyzed methanolysis of styrene oxide. Tetrahedron Lett. 33, 2191–2194 (1992)

    Article  CAS  Google Scholar 

  183. N. Iranpoor, P. Salehi, Highly efficient, regio- and stereoselective alcoholysis of epoxides catalyzed with iron(III) chloride. Synthesis, 1152–1154 (1994)

  184. N. Iranpoor, T. Tarrian, Z. Movahedi, FeCl3·6H2O Supported on SiO2 catalysed ring-opening of epoxides with alcohols, acetic acid, water, chloride, bromide and nitrate ions. Synthesis, 1473–1476 (1996)

  185. N. Iranpoor, H. Adibi, Iron(III) trifluoroacetate as an efficient catalyst for solvolytic and nonsolvolytic nucleophilic ring-opening of epoxides. Bull. Chem. Soc. Jpn. 73, 675–680 (2000)

    Article  CAS  Google Scholar 

  186. J. Barluenga, H. Vazquez-Villa, A. Ballesteros, J.M. Gonzalez, Copper(II) tetrafluoroborate catalyzed ring-opening reaction of epoxides with alcohols at room temperature. Org. Lett. 4, 2817–2819 (2002)

    Article  CAS  PubMed  Google Scholar 

  187. V. Mirkhani, S. Tangestaninejad, B. Yadollahi, L. Alipanah, Efficient regio- and stereoselective ring opening of epoxides with alcohols, acetic acid and water catalyzed by ammonium decatungstocerate(IV). Tetrahedron 59, 8213–8218 (2003)

    Article  CAS  Google Scholar 

  188. B.H. Kim, F. Piao, E.J. Lee, J.S. Kim, Y.M. Jun, B.M. Lee, InCl3-catalyzed rergioselective ring-opening reactions of epoxides to β-hydroxyethers. Bull. Korean Chem. Soc. 25, 881–888 (2004)

    Article  CAS  Google Scholar 

  189. M. Moghadam, S. Tangestaninejad, V. Mirkhani, R. Shaibani, Rapid and efficient ring opening of epoxides catalyzed by a new electron deficient tin(IV) porphyrin. Tetrahedron 60, 6105–6111 (2004)

    Article  CAS  Google Scholar 

  190. M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, S.A. Taghavi, High-valent tin(IV) porphyrin, SnIV(TPP)(BF4)2, as an efficient catalyst for the ring-opening of epoxides. Catal. Commun. 8, 2087–2095 (2007)

    Article  CAS  Google Scholar 

  191. S. Tangestaninejad, M. Moghadam, V. Mirkhani, B. Yadollahi, S.M.R. Mirmohammadi, Mild and efficient ring opening of epoxides catalyzed by potassium dodecatungstocobaltate(III). Monatsh. Chem. 137, 235–242 (2006)

    Article  CAS  Google Scholar 

  192. V.R. Acham, M.K. Dongare, E. Kemnitz, S.B. Umbarkar, An epoxide ring-opening reaction by using sol-gel-synthesized palladium supported on a strontium hydroxyl fluoride catalyst. C. R. Chim. 19, 1237–1246 (2016)

    Article  CAS  Google Scholar 

  193. B. Zeynizadeh, M. Gilanizadeh, F.M. Aminzadeh, A highly efficient protocol for regioselective ring-opening of epoxides with alcohols, water, acetic acid, and acetic anhydride catalyzed by SbF3. Phosphorus Sulfur Silicon 191, 1051–1056 (2016)

    Article  CAS  Google Scholar 

  194. M.W.C. Robinson, R. Buckle, I. Mabbett, G.M. Grant, A.E. Graham, Mesoporous aluminosilicate promoted alcoholysis of epoxides. Tetrahedron Lett. 48, 4723–4725 (2007)

    Article  CAS  Google Scholar 

  195. I. Matos, P.D. Neves, J.E. Castanheiro, E. Perez-mayoral, R. Martin-aranda, C. Duran-valle, J. Vital, A.M. Botelho, I.M. Fonseca, Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Appl. Catal. A Gen. 439–440, 24–30 (2012)

    Google Scholar 

  196. T. Miura, Y. Masaki, Catalytic activities of dicyanoketene acetals in alcoholysis of epoxides. Chem. Pharm. Bull. 43, 523–525 (1995)

    Article  CAS  Google Scholar 

  197. N. Iranpoor, B. Tamami, K. Niknam, Iodine and iodine supported on polyvinylpyrrolidone as catalysts and reagents for alcoholysis, hydrolysis, and acetolysis of epoxides and thiiranes. Can. J. Chem. 75, 1913–1919 (1997)

    Article  CAS  Google Scholar 

  198. W. Fenical, Molecular aspects of halogen-based biosynthesis of marine natural products (Plenum Press, New York, 1979)

    Book  Google Scholar 

  199. P.A. Bartlett, Asymmetric Synthesis (Academic, New York, 1984)

    Google Scholar 

  200. C.A. Stewart, C.A. VanderWerf, Reaction of propylene oxide with hydrogen halides. J. Am. Chem. Soc. 76, 1259–1264 (1954)

    Article  CAS  Google Scholar 

  201. G. Palumbo, C. Ferrari, R. Caputo, A new general synthesis of halohydrins. Tetrahedron Lett. 24, 1307–1310 (1983)

    Article  CAS  Google Scholar 

  202. C. Bonini, G. Righi, Regio- and chemoselective synthesis of halohydrins by cleavage of oxiranes with metal halides. Synthesis, 225–238 (1994)

  203. J.S. Bajwa, R.C. Anderson, A highly regioselective conversion of epoxides to haloliydrins by lithilim halides. Tetrahedron Lett. 32, 3021–3024 (1991)

    Article  CAS  Google Scholar 

  204. H. Kotsuki, T. Shimanouchi, A facile conversion of epoxides to β-halohydrins with silica gel-supported lithium halides. Tetrahedron Lett. 37, 1845–1848 (1996)

    Article  CAS  Google Scholar 

  205. H. Kotsuki, T. Shimanouchi, R. Ohshima, S. Fujiwara, Solvent-free organic reactions on silica gel supports. Facile transformation of epoxides to β-halohydrins with lithium halides. Tetrahedron 54, 2709–2722 (1998)

    Article  CAS  Google Scholar 

  206. R.D. Dawe, T.F. Molinski, J.V. Turner, Dilithium tetrabromonickelate(II) as a source of soft nucleophilic bromide: reaction with epoxides. Tetrahedron Lett. 25, 2061–2064 (1984)

    Article  CAS  Google Scholar 

  207. J.A. Giaccio, K.J. Addess, T.W. Bell, Dilithium tetrachlorocuprate. A reagent for regioselective cleavage of epoxides to chlorohydrins. Tetrahedron Lett. 27, 3697–3700 (1986)

    Article  Google Scholar 

  208. T.W. Bell, J.A. Giaccio, Conversion of epoxides to bromohydrins by B-bromobis(dimethylamino)borane. Tetrahedron Lett. 27, 827–830 (1986)

    Article  CAS  Google Scholar 

  209. L.J. Weselinski, M.J. Grillo, M. Tanasova, The practical stereocontrolled synthesis of vicinal halohydrins and haloamines from vinyl epoxides and vinyl aziridines. Tetrahedron Lett. 57, 4477–4479 (2016)

    Article  CAS  Google Scholar 

  210. G. Sabitha, R.S. Babu, M. Rajkumar, C.S. Reddy, J.S. Yadav, Highly regioselective ring opening of epoxides and aziridines using (bromodimethyl)sulfonium bromide. Tetrahedron Lett. 42, 3955–3958 (2001)

    Article  CAS  Google Scholar 

  211. B. Tamami, H. Mahdavi, Synthesis of halohydrins from epoxides using quaternized amino functionalized cross-linked polyacrylamide as a new solid–liquid phase transfer catalyst. React. Funct. Polym. 51, 7–13 (2002)

    Article  CAS  Google Scholar 

  212. T. Wang, W.H. Ji, Z.Y. Xu, B.B. Zeng, An efficient and convenient protocol for highly regioselective cleavage of terminal epoxides to β-halohydrins. Synlett, 1511–1513 (2009)

  213. R.M.A. Pinto, J.A.R. Salvador, C. Le Roux, Bismuth(III) salts mediated regioselective ring opening of epoxides: an easy route to halohydrins and β-hydroxy nitrates. Tetrahedron 63, 9221–9228 (2007)

    Article  CAS  Google Scholar 

  214. M.I. Konaklieva, M.L. Dahl, E. Turos, Halogenation reactions of epoxides. Tetrahedron Lett. 33, 7093–7096 (1992)

    Article  CAS  Google Scholar 

  215. H. Sharghi, A.R. Massah, H. Eshghi, K. Niknam, Crown ethers as new catalysts in the highly regioselective halogenative cleavage of epoxides with elemental halogen. J. Org. Chem. 63, 1455–1461 (1998)

    Article  CAS  Google Scholar 

  216. H. Sharghi, H. Naeimi, Schiff-base complexes of Metal(II) as new catalysts in the high-regioselective conversion of epoxides to halo alcoholsby means of elemental halogen. Bull. Chem. Soc. Jpn. 72, 1525–1531 (1999)

    Article  CAS  Google Scholar 

  217. H. Sharghi, K. Niknam, M. Pooyan, The halogen-mediated opening of epoxides in the presence of pyridine-containing macrocycles. Tetrahedron 57, 6057–6064 (2001)

    Article  CAS  Google Scholar 

  218. K. Niknam, T. Nasehi, Cleavage of epoxides into halohydrins with elemental iodine and bromine in the presence of 2,6-bis[2-(o-aminophenoxy)methyl-4-bromo-1-methoxybenzene (BABMB) as catalyst. Tetrahedron 58, 10259–10261 (2002)

    Article  CAS  Google Scholar 

  219. H. Sharghi, Z. Paziraee, K. Niknam, Halogenated cleavage of epoxides into halohydrins in the presence of a series of diamine podands as catalyst with elemental iodine and bromine. Bull. Korean Chem. Soc. 23, 1611–1615 (2002)

    Article  CAS  Google Scholar 

  220. M.A. Reddy, K. Surendra, N. Bhanumathi, K.R. Rao, Highly facile biomimetic regioselective ring opening of epoxides to halohydrins in the presence of β-cyclodextrin. Tetrahedron 58, 6003–6008 (2002)

    Article  CAS  Google Scholar 

  221. H. Sharghi, M.M. Eskandari, Conversion of epoxides to halohydrins with elemental halogen catalyzed by phenylhydrazine. Tetrahedron 59, 8509–8514 (2003)

    Article  CAS  Google Scholar 

  222. D. Landini, A. Maia, C. Pinna, Ring opening reactions of 1,2-epoxides catalyzed by complexes of polyether ligands with metal halides in low polarity solvents. Comparison with heterogeneous systems. Arkivoc, 202–212 (2004)

  223. H. Naeimi, M. Moradian, Alumina-supported metal(II) Schiff base complexes as heterogeneous catalysts in the high-regioselective cleavage of epoxides to halohydrins by using elemental halogen. Polyhedron 27, 3639–3645 (2008)

    Article  CAS  Google Scholar 

  224. J. Wu, X. Sun, W. Sun, S. Ye, Unexpected highly efficient ring-opening of aziridines or epoxides with iodine promoted by thiophenol. Synlett, 2489–2491 (2006)

  225. N. Iranpoor, F. Kazemi, P. Salehi, Highly regio- and stereoselective synthesis of β-halohydrins from epoxides catalyzed with ceric ammonium nitrate. Synth. Commun. 27, 1247–1258 (1997)

    Article  CAS  Google Scholar 

  226. B. Das, M. Krishnaiah, K. Venkateswarlu, Highly regioselective ring opening of epoxides and aziridines using (bromodimethyl)sulfonium bromide. Tetrahedron Lett. 47, 4457–4460 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Kiasat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah-Mehrjardi, M., Kiasat, A.R. & Niknam, K. Nucleophilic ring-opening of epoxides: trends in β-substituted alcohols synthesis. J IRAN CHEM SOC 15, 2033–2081 (2018). https://doi.org/10.1007/s13738-018-1400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1400-5

Keywords

Navigation