Skip to main content
Log in

A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Leeuwen P W N M, Claver C. Rhodium Catalyzed Hydroformylation. Berlin: Springer-Heidelberg, 2008, Chapter 1: 1–13

    Google Scholar 

  2. Franke R, Selent D, Börner A. Applied hydroformylation. Chemical Reviews, 2012, 112(11): 5675–5732

    Article  CAS  PubMed  Google Scholar 

  3. Hebrard F, Kalck P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chemical Reviews, 2009, 109(9): 4272–4282

    Article  CAS  PubMed  Google Scholar 

  4. Neves  C B, Calvete M J F, Pinhoe Melo T M V D, Pereira M M. Immobilized catalysts for hydroformylation reactions: A versatile tool for aldehyde synthesis. European Journal of Organic Chemistry, 2012, 2012: 6309–6320

    Article  CAS  Google Scholar 

  5. Fleischer I, Wu L, Profir I, Jackstell R, Franke R, Beller M. Towards the development of a selective ruthenium-catalyzed hydroformylation of olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(32): 10589–10594

    CAS  Google Scholar 

  6. Fang X, Zhang M, Jackstell R, Beller M. Selective palladiumcatalyzed hydroformylation of alkynes to a,ß-unsaturated aldehydes. Angewandte Chemie International Edition, 2013, 52(17): 4645–4649

    Article  CAS  PubMed  Google Scholar 

  7. Kubis C, Baumann W, Barsch E, Selent D, Sawall M, Ludwig R, Neymeyr K, Hess D, Franke R, Börner A. Investigation into the equilibrium of iridium catalysts for the hydroformylation of olefins by combining in situ high-pressure FTIR and NMR spectroscopy. ACS Catalysis, 2014, 4(7): 2097–2108

    Article  CAS  Google Scholar 

  8. Janssen M, Wilting J, Müller C, Vogt D. Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by Employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182

    Article  CAS  PubMed  Google Scholar 

  10. Klähn M, Garland M V. On the mechanism of the catalytic binuclear elimination reaction in hydroformylation systems. ACS Catalysis, 2015, 5(4): 2301–2316

    Article  CAS  Google Scholar 

  11. Cornils B, Herrmann W A, Rasch M. Otto Roelen, pioneer in industrial homogeneous catalysis. Angewandte Chemie International Edition in English, 1994, 33(21): 2144–2163

    Article  Google Scholar 

  12. Roelen O. DE Patent, 849548, 1938

    Google Scholar 

  13. Roelen O. US Patent, 2327066, 1943

    Google Scholar 

  14. Haumann M, Jakuttis M, Franke R, Schönweiz A, Wasserscheid P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts. ChemCatChem, 2011, 3(11): 1822–1827

    Article  CAS  Google Scholar 

  15. Jacobs I, de Bruin B, Reek J N H. Comparison of the full catalytic cycle of hydroformylation mediated by mono-and bis-ligated triphenylphosphine-rhodium complexes by using DFT calculations. ChemCatChem, 2015, 7(11): 1708–1718

    Article  CAS  Google Scholar 

  16. Brunsch Y, Behr A. Temperature-controlled catalyst recycling in homogeneous transition-metal catalysis: Minimization of catalyst leaching. Angewandte Chemie International Edition, 2013, 52(5): 1586–1589

    Article  CAS  PubMed  Google Scholar 

  17. Gellrich U, Seiche W, Keller M, Breit B. Mechanistic insights into a supramolecular self-assembling catalyst system: Evidence for hydrogen bonding during rhodium-catalyzed hydroformylation. Angewandte Chemie International Edition, 2012, 51(44): 11033–11038

    Article  CAS  PubMed  Google Scholar 

  18. Wu L, Fleischer I, Jackstell R, Profir I, Franke R, Beller M. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: Extending the scope to internal alkenes. Journal of the American Chemical Society, 2013, 135(38): 14306–14312

    Article  CAS  PubMed  Google Scholar 

  19. Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182

    Article  CAS  PubMed  Google Scholar 

  20. Neubert P, Fuchs S, Behr A. Hydroformylation of piperylene and efficient catalyst recycling in propylene carbonate. Green Chemistry, 2015, 17(7): 4045–4052

    Article  CAS  Google Scholar 

  21. Dydio P, Detz R J, de Bruin B, Reek J N H. Beyond claßsical reactivity patterns: Hydroformylation of vinyl and allyl arenes to valuable ß-and γ-aldehyde intermediates using supramolecular catalysis. Journal of the American Chemical Society, 2014, 136(23): 8418–8429

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi K, Yamashita M, Nozaki K. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst. Journal of the American Chemical Society, 2012, 134(45): 18746–18757

    Article  CAS  PubMed  Google Scholar 

  23. Dong K, Fang X, Jackstell R, Beller M. A novel rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides. Chemical Communications, 2015, 51(24): 5059–5062

    Article  CAS  PubMed  Google Scholar 

  24. Fleischer I, Dyballa K M, Jennerjahn R, Jackstell R, Franke R, Spannenberg A, Beller M. From olefins to alcohols: Efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angewandte Chemie International Edition, 2013, 52(10): 2949–2953

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi K, Yamashita M, Tanaka Y, Nozaki K. Ruthenium/C5Me5/bisphosphine-or bisphosphite-based catalysts for normalselective hydroformylation. Angewandte Chemie International Edition, 2012, 51(18): 4383–4387

    Article  CAS  PubMed  Google Scholar 

  26. Dydio P, Dzik W I, Lutz M, de Bruin B, Reek J N H. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. Angewandte Chemie International Edition, 2011, 50(2): 396–400

    Article  CAS  PubMed  Google Scholar 

  27. Jia X, Wang Z, Xia C, Ding K. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(48): 15288–15295

    CAS  Google Scholar 

  28. Agbossou F, Carpentier J F, Mortreux A. Asymmetric hydroformylation. Chemical Reviews, 1995, 95(7): 2485–2506

    Article  CAS  Google Scholar 

  29. Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angewandte Chemie International Edition, 2013, 52(10): 2852–2872

    Article  CAS  PubMed  Google Scholar 

  30. Brown C K, Wilkinson G. Homogeneous hydroformylation of alkenes with hydridocarbonyltris-(triphenylphosphine) rhodium (I) as catalyst. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970, 2753–2764

    Google Scholar 

  31. Evans D, Osborn J A, Wilkinson G. Hydroformylation of alkenes by use of rhodium complex catalysts. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968, 3133–3142

    Google Scholar 

  32. Herrmann W A, Schmid R, Kohlpaintner C W, Priermeier T. Structure and metal coordination of the diphosphine 2,2′-bis ((diphenylphosphino)methyl)-1,1′-binaphthyl (NAPHOS). Organometallics, 1995, 14(4): 1961–1968

    Article  CAS  Google Scholar 

  33. Casey C P, Paulsen E L, Beuttenmueller E W, Proft B R, Petrovich L M, Matter B A, Powell D R. Electron withdrawing substituents on equatorial and apical phosphines have opposite effects on the regioselectivity of rhodium catalyzed hydroformylation. Journal of the American Chemical Society, 1997, 119(49): 11817–11825

    Article  CAS  Google Scholar 

  34. Casey C P, Whiteker G T, Melville M G, Petrovich L M, Gavney J A Jr, Powell D R. Diphosphines with natural bite angles near 120° increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation. Journal of the American Chemical Society, 1992, 114(14): 5535–5543

    Article  CAS  Google Scholar 

  35. Herrmann W A, Kohlpaintner C W, Herdtweck E, Kiprof P. Structure and metal coordination of the diphosphane 2,2′-bis ((diphenylphosphino) methyl)-1,1′-biphenyl (“BISBI”). Inorganic Chemistry, 1991, 30(22): 4271–4275

    Article  CAS  Google Scholar 

  36. Billig E, Abatjoglou A G, Bryant D R. (a) EU Patent, 213639, 1987; (b) US Patent, 4748261, 1988

    Google Scholar 

  37. Behr A, Obst D, Schulte C, Schosser T. Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to nnonanal with rhodium-BIPHEPHOS catalysis. Journal of Molecular Catalysis A Chemical, 2003, 206(1-2): 179–184

    Article  CAS  Google Scholar 

  38. Vogl C, Paetzold E, Fischer C, Kragl U. Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system. Journal of Molecular Catalysis A Chemical, 2005, 232(1-2): 41–44

    Article  CAS  Google Scholar 

  39. Kiedorf G, Hoang D M, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C. Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chemical Engineering Science, 2014, 115: 31–48

    Article  CAS  Google Scholar 

  40. Cuny G D, Buchwald S L. Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized alphaolefins. Journal of the American Chemical Society, 1993, 115(5): 2066–2068

    Article  CAS  Google Scholar 

  41. Behr A, Obst D, Turkowski B. Isomerizing hydroformylation of trans-4-octene to n-nonanal in multiphase systems: Acceleration effect of propylene carbonate. Journal of Molecular Catalysis A Chemical, 2005, 226(2): 215–219

    Article  CAS  Google Scholar 

  42. Moasser B, Gladfelter W L, Roe D C. Mechanistic aspects of a highly regioselective catalytic alkene hydroformylation using a rhodium chelating bis(phosphite) complex. Organometallics, 1995, 14(8): 3832–3838

    Article  CAS  Google Scholar 

  43. Sakai N, Mano S, Nozaki K, Takaya H. Highly enantioselective hydroformylation of olefins catalyzed by new phosphine phosphite-rhodium (I) complexes. Journal of the American Chemical Society, 1993, 115(15): 7033–7034

    Article  CAS  Google Scholar 

  44. Carbó J J, Maseras F, Bo C, van Leeuwen P W N M. Unraveling the origin of regioselectivity in rhodium diphosphine catalyzed hydroformylation. A DFT QM/MM study. Journal of the American Chemical Society, 2001, 123(31): 7630–7637

    Article  CAS  PubMed  Google Scholar 

  45. Kranenburg M, van der Burgt Y E M, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J. New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation: Effect of the bite angle. Organometallics, 1995, 14(6): 3081–3089

    Article  CAS  Google Scholar 

  46. van der Veen L A, Boele M D K, Bregman F R, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J, Schenk H, Bo C. Electronic effect on rhodium diphosphine catalyzed hydroformylation: The bite angle effect reconsidered. Journal of the American Chemical Society, 1998, 120(45): 11616–11626

    Article  Google Scholar 

  47. Hillebrand S, Bruckmann J, Krüger C, Haenel M W. Bidentate phosphines of heteroarenes: 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene. Tetrahedron Letters, 1995, 36(1): 75–78

    Article  CAS  Google Scholar 

  48. Klein H, Jackstell R, Wiese K D, Borgmann C, Beller M. Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes. Angewandte Chemie International Edition, 2001, 40(18): 3408–3411

    Article  CAS  PubMed  Google Scholar 

  49. Cai C, Yu S, Cao B, Zhang X. New tetraphosphorus ligands for Highly linear selective hydroformylation of allyl and vinyl derivatives. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(32): 9992–9998

    CAS  Google Scholar 

  50. Li S, Huang K, Zhang J, Wu W, Zhang X. Rhodium-catalyzed highly regioselective hydroaminomethylation of styrenes with tetraphosphorus ligands. Organic Letters, 2013, 15(12): 3078–3081

    Article  CAS  PubMed  Google Scholar 

  51. Yu S, Chie Y, Guan Z, Zou Y, Li W, Zhang X. Highly regioselective hydroformylation of styrene and its derivatives catalyzed by Rh complex with tetraphosphorus ligands. Organic Letters, 2008, 11(1): 241–244

    Article  CAS  Google Scholar 

  52. Yu S, Chie Y, Guan Z, Zhang X. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using Rh complexes with tetraphosphorus ligands. Organic Letters, 2008, 10(16): 3469–3472

    Article  CAS  PubMed  Google Scholar 

  53. Hemminger O, Marteel A, Mason M R, Davies J A, Tadd A R, Abraham M A. Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chemistry, 2002, 4(5): 507–512

    Article  CAS  Google Scholar 

  54. Janssen M, Wilting J, Müller C, Vogt D. Continuous Rhodiumcatalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741

    Article  CAS  PubMed  Google Scholar 

  55. Kunene T E, Webb P B, Cole-Hamilton D J. Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chemistry, 2011, 13(6): 1476–1481

    Article  CAS  Google Scholar 

  56. Cole-Hamilton D J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science, 2003, 299(5613): 1702–1706

    Article  CAS  PubMed  Google Scholar 

  57. Zhou W, He D. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation. Green Chemistry, 2009, 11(8): 1146–1154

    Article  CAS  Google Scholar 

  58. Zhou W, He D. Anchoring RhCl(CO)(PPh3)2 to-PrPPh2 modified MCM-41 as effective catalyst for 1-octene hydroformylation. Catalysis Letters, 2009, 127(3-4): 437–443

    Article  CAS  Google Scholar 

  59. Zhou W, He D. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation. Chemical Communications, 2008, 44(44): 5839–5841

    Article  CAS  Google Scholar 

  60. Marras F, Wang J, Coppens M O, Reek J N H. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity. Chemical Communications, 2010, 46(35): 6587–6589

    Article  CAS  PubMed  Google Scholar 

  61. Marras F, Kluwer A M, Siekierzycka J R, Vozza A, Brouwer A M, Reek J N H. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: Towards rational catalyst immobilization. Angewandte Chemie International Edition, 2010, 49(32): 5480–5484

    Article  CAS  PubMed  Google Scholar 

  62. Bae J A, Song K C, Jeon J K, Ko Y S, Park Y K, Yim J H. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation. Microporous and Mesoporous Materials, 2009, 123(1-3): 289–297

    Article  CAS  Google Scholar 

  63. Abu-Reziq R, Alper H, Wang D, Post M. Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. Journal of the American Chemical Society, 2006, 128(15): 5279–5282

    Article  CAS  PubMed  Google Scholar 

  64. Srivastava V K, Sharma S K, Shukla R S, Jasra R V. Rhodium metal complex and hydrotalcite based environmentally friendly catalyst system for the selective synthesis of C8-aldehydes from propylene. Industrial & Engineering Chemistry Research, 2008, 47(11): 3795–3803

    Article  CAS  Google Scholar 

  65. Sharma S K, Parikh P A, Jasra R V. Hydroformylation of alkenes using heterogeneous catalyst prepared by intercalation of HRh (CO)(TPPTS)3 complex in hydrotalcite. Journal of Molecular Catalysis A Chemical, 2010, 316(1-2): 153–162

    Article  CAS  Google Scholar 

  66. Jiang M, Ding Y, Yan L, Song X, Lin R. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins. Chinese Journal of Catalysis, 2014, 35(9): 1456–1464

    Article  CAS  Google Scholar 

  67. Wang T, Wang W, Lyu Y, Xiong K, Li C, Zhang H, Zhan Z, Jiang Z, Ding Y. Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: Enhanced enantioselectivity realized by flexible chiral nanopockets. Chinese Journal of Catalysis, 2017, 38(4): 691–698

    Article  CAS  Google Scholar 

  68. Nozaki K, Shibahara F, Hiyama T. Vapor-phase asymmetric hydroformylation. Chemistry Letters, 2000, 29(6): 694–695

    Article  Google Scholar 

  69. Shibahara F, Nozaki K, Matsuo T, Hiyama T. Asymmetric hydroformylation with highly crosslinked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complexes: The effect of immobilization position. Bioorganic & Medicinal Chemistry Letters, 2002, 12(14): 1825–1827

    Article  CAS  Google Scholar 

  70. Shibahara F, Nozaki K, Hiyama T. Solvent-free asymmetric olefin hydroformylation catalyzed by highly cross-linked polystyrenesupported (R,S)-BINAPHOS-Rh(I) complex. Journal of the American Chemical Society, 2003, 125(28): 8555–8560

    Article  CAS  PubMed  Google Scholar 

  71. Kinoshita S, Shibahara F, Nozaki K. Comparison of two preparative methods: A polymer-supported catalyst by metalcomplexation with a polymeric ligand or by polymerization of a metal complex. Green Chemistry, 2005, 7: 256–258

    Article  CAS  Google Scholar 

  72. Makhubela B C E, Jardine A, Smith G S. Rh(I) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts. Green Chemistry, 2012, 14(2): 338–347

    Article  CAS  Google Scholar 

  73. Jana R, Tunge J A. A homogeneous, recyclable polymer support for Rh (I)-catalyzed CC bond formation. Journal of Organic Chemistry, 2011, 76(20): 8376–8385

    Article  CAS  PubMed  Google Scholar 

  74. Jana R, Tunge J A. A homogeneous, recyclable rhodium(I) catalyst for the hydroarylation of Michael acceptors. Organic Letters, 2009, 11(4): 971–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhu H, Ding Y, Yin H, Yan L, Xiong J, Lu Y, Luo H, Lin L. Supported rhodium and supported aqueous-phase catalyst, and supported rhodium catalyst modified with water-soluble TPPTS ligands. Applied Catalysis A, General, 2003, 245(1): 111–117

    Article  CAS  Google Scholar 

  76. Zhu H J, Ding Y J, Yan L, Xiong J, Li X, Zhang L, Lin P, Huang S, Lin L. A novel family of catalysts comprising a supported metal and a supported aqueous-phase catalyst. Chinese Journal of Catalysis, 2003, 24: 81–82

    Google Scholar 

  77. Mukhopadhyay K, Chaudhari R V. Heterogenized HRh(CO) (PPh3)3 on zeolite Y using phosphotungstic acid as tethering agent: A novel hydroformylation catalyst. Journal of Catalysis, 2003, 213(1): 73–77

    Article  CAS  Google Scholar 

  78. Han D, Li X, Zhang H, Liu Z, Hu G, Li C. Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligand. Journal of Molecular Catalysis A Chemical, 2008, 283(1-2): 15–22

    Article  CAS  Google Scholar 

  79. Han D, Li X, Zhang H, Liu Z, Li J, Li C. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. Journal of Catalysis, 2006, 243(2): 318–328

    Article  CAS  Google Scholar 

  80. Shylesh S, Hanna D, Mlinar A, Kong X, Reimer J A, Bell A. In situ formation of Wilkinson-type hydroformylation catalysts: Insights into the structure, stability, and kinetics of triphenylphosphine-and xantphos-modified Rh/SiO2. ACS Catalysis, 2013, 3(3): 348–357

    Article  CAS  Google Scholar 

  81. Yan L, Ding Y, Zhu H, Xiong J, Wang T, Pan Z, Lin L. Ligand modified real heterogeneous catalysts for fixed-bed hydroformylation of propylene. Journal of Molecular Catalysis A Chemical, 2005, 234(1-2): 1–7

    Article  CAS  Google Scholar 

  82. Yan L, Ding Y, Zhu H, Yin H, Jiao G, Zhao D, Lin L. Continuous fixed-bed gas-phase hydroformylation over PPh3-modified mesostructured cellular foam-supported Rh catalyst. Chinese Journal of Catalysis, 2006, 27(1): 1–3

    Article  CAS  Google Scholar 

  83. Yan L, Ding Y, Lin L, Zhu H, Yin H, Li X, Lu Y. In situ formation of HRh(CO)2(PPh3)2 active species on the surface of a SBA-15 supported heterogeneous catalyst and the effect of support pore size on the hydroformylation of propene. Journal of Molecular Catalysis A Chemical, 2009, 300(1-2): 116–120

    Article  CAS  Google Scholar 

  84. Yan L, Ding Y, Liu J, Zhu H, Lin L. Influence of phosphine concentration on propylene hydroformylation over the PPh3-Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2011, 32(1-2): 31–35

    Article  CAS  Google Scholar 

  85. Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Hydroformylation of internal olefins to linear aldehydes over a phosphite ligand modified Rh/SiO2 catalyst. Journal of Natural Gas Chemistry, 2008, 17: 351–354

    Article  CAS  Google Scholar 

  86. Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphorus ligand modified Rh/SiO2 catalyst for hydroformylation of methyl-3-pentenoate. Chinese Journal of Catalysis, 2008, 29(12): 1193–1195

    Article  CAS  Google Scholar 

  87. Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphite ligand modified supported rhodium catalyst for hydroformylation of internal olefins to linear aldehydes. Chemical Research in Chinese Universities, 2009, 25: 738–739

    Google Scholar 

  88. Li X, Ding Y, Jiao G, Li J, Lin R, Gong L, Yan L, Zhu H. A new concept of tethered ligand-modified Rh/SiO2 catalyst for hydroformylation with high stability. Applied Catalysis A, General, 2009, 353(2): 266–270

    Article  CAS  Google Scholar 

  89. Liu J, Yan L, Ding Y, Jiang M, Dong W, Song X, Liu T, Zhu H. Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation. Applied Catalysis A, General, 2015, 492: 127–132

    Article  CAS  Google Scholar 

  90. Liu J, Yan L, Jiang M, Li C, Ding Y. Effect of lengthening alkyl spacer on hydroformylation performance of tethered-phosphine modified Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2016, 37(2): 268–272

    Article  CAS  Google Scholar 

  91. Arya P, Panda G, Rao N V, Alper H, Bourque S C, Manzer L E. Solid-phase catalysis: A biomimetic approach toward ligands on dendritic arms to explore recyclable hydroformylation reactions. Journal of the American Chemical Society, 2001, 123(12): 2889–2890

    Article  CAS  PubMed  Google Scholar 

  92. Adint T T, Landis C R. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation. Journal of the American Chemical Society, 2014, 136(22): 7943–7953

    Article  CAS  PubMed  Google Scholar 

  93. Nowotny M, Maschmeyer T, Johnson B F G, Lahuerta P, Thomas J M, Davies J E. Heterogeneous dinuclear rhodium(II) hydroformylation catalysts-performance evaluation and silsesquioxanebased chemical modeling. Angewandte Chemie International Edition, 2001, 40(5): 955–958

    Article  CAS  PubMed  Google Scholar 

  94. Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X, Xiao F. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. Journal of the American Chemical Society, 2015, 137(15): 5204–5209

    Article  CAS  PubMed  Google Scholar 

  95. Sun Q, Jiang M, Shen Z, Jin Y, Pan S, Wang L, Meng X, Chen W, Ding Y, Li J, Xiao F. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chemical Communications, 2014, 50(80): 11844–11847

    Article  CAS  PubMed  Google Scholar 

  96. Zhou Y B, Li C Y, Lin M, Ding Y, Zhan Z. A polymer-bound monodentate-P-ligated palladium complex as a recyclable catalyst for the Suzuki-Miyaura coupling reaction of aryl chlorides. Advanced Synthesis & Catalysis, 2015, 357(11): 2503–2508

    Article  CAS  Google Scholar 

  97. Jiang M, Yan L, Ding Y, Sun Q, Liu J, Zhu H, Lin R, Xiao F, Jiang Z, Liu J. Ultrastable 3V-PPh3 polymers supported single Rh sites for fixed-bed hydroformylation of olefins. Journal of Molecular Catalysis A Chemical, 2015, 404: 211–217

    Article  CAS  Google Scholar 

  98. Jiang M, Yan L, Sun X, Lin R, Song X, Jiang Z, Ding Y. Effect of different synthetic routes on the performance of propylene hydroformylation over 3V-PPh3 polymer supported Rh catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1): 223–234

    Article  CAS  Google Scholar 

  99. Li C, Xiong K, Yan L, Jiang M, Song X, Wang T, Chen X, Zhan Z, Ding Y. Designing highly efficient Rh/CPOL-bp&PPh3 heterogenous catalysts for hydroformylation of internal and terminal olefins. Catalysis Science & Technology, 2016, 6(7): 2143–2149

    Article  CAS  Google Scholar 

  100. Kohlpaintner C W, Fischer R W, Cornils B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Applied Catalysis A, General, 2001, 221(1-2): 219–225

    Article  CAS  Google Scholar 

  101. Li C, Yan L, Lu L, Xiong K, Wang W, Jiang M, Liu J, Song X, Zhan Z, Jiang Z, Ding Y. Single atom dispersed Rh-biphephos & PPh3@ porous organic copolymers: Highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chemistry, 2016, 18(10): 2995–3005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21273227 and 21403258) and the Strategic Priority Research Program of the Chinese Academy of Science (Grant Nos XDB17020400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yan or Yunjie Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, W., Yan, L. et al. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts. Front. Chem. Sci. Eng. 12, 113–123 (2018). https://doi.org/10.1007/s11705-017-1672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1672-9

Keywords

Navigation