Skip to main content

Advertisement

Log in

The hallmarks of cancer… in pituitary tumors?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Over 20 years ago, Hanahan and Weinberg published a seminal review that addressed the biological processes that underly malignant transformation. This classical review, along with two revisions published in 2011 and 2022, has remain a classic of the oncology literature. Since many of the addressed biological processes may apply to non-malignant tumorigenesis, we evaluated to what extent these hallmarks pertain to the development of pituitary adenomas.

Some of the biological processes analyzed in this review include genome instability generated by somatic USP8 and GNAS mutations in Cushing’s diseases and acromegaly respectively; non-mutational epigenetic reprograming through changes in methylation; induction of angiogenesis through alterations of VEGF gene expression; promotion of proliferative signals mediated by EGFR; evasion of growth suppression by disrupting cyclin dependent kinase inhibitors; avoidance of immune destruction; and the promotion of inflammation mediated by alteration of gene expression of immune check points. We also elaborate further on the existence of oncogene induced senescence in pituitary tumors. We conclude that a better understanding of these processes can help us dilucidated why pituitary tumors are so resistant to malignant transformation and can potentially contribute to the development of novel anticancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PA:

Pituitary Adenoma

CNFPA:

Clinically Non-Functioning Pituitary Adenoma

GH:

Growth Hormone

PRL:

Prolactin

TSH:

Thyroid Stimulating Hormone

ACTH:

Adrenocorticotrophic Hormone

POU1F1 / Pit-1:

Pituitary-specific Positive Transcription factor-1

TBX19 / T-Pit:

T-Box Transcription Factor 19

LH:

Luteinizing Hormone

FSH:

Follicle-Stimulating Hormone

NR5A1 / SF-1:

Nuclear Receptor Subfamily 5 Group A Member 1 / Steroidogenic Factor-1

MEN:

Multiple Endocrine Neoplasia

CDKN:

Cyclin Dependent Kinase

PRKAR1A:

Regulatory Alpha-subunit of Protein Kinase A

SDNH:

Succinate-Dehydrogenase

RNAse:

Ribonuclease

FIPA:

Familial Isolated Pituitary Adenoma

AIP:

Aryl-hydrocarbon receptor Interacting Protein

X-LAG:

X-Linked Acrogigantism

GPR101:

G Protein-coupled Receptor 101

USP8:

Ubiquitin Specific peptidase 8

EGFR:

Epidermal Growth Factor Receptor

POMC:

Proopiomelanocortin

GNAS:

Guanine Nucleotide binding protein Alpha Subunit

GHRH:

Growth Hormone Releasing Hormone

CREB:

CAMP Response Element Binding protein

CNV:

Copy number variation

CACNA2D4:

Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta 4

GRIA2 / GRIA4:

Glutamate Ionotropic Receptor AMPA Type Subunit 2 / Subunit 4

AVPR1B:

Arginine Vasopressin Receptor 1B

EPHA4:

EPH Receptor A4

GRIN2B:

Glutamate Receptor subiunit epsilon 2

TMEM233:

Transmembrane Protein 233

miRNA:

MicroRNA (miR)

UTR:

Untranslated Regions

mRNA:

Messenger RNA

lncRNA:

Long non-coding RNAs

LINC00473:

Long Intergenic Non-Protein Coding RNA 473

KMT5A:

Lysine Methyltransferase 5A

RPSAP52:

Ribosomal protein SA pseudogene 52

HMGA1 / 2:

High Mobility Group AT-Hook 1 / 2

XIST:

X-Inactive Specific Transcript

VEGF:

Vascular Endothelial Growth Factor

BCL-2:

B Cell Lymphoma 2

FGF2:

Fibroblast Growth Factor 2

CD31 / PECAM-1:

Cluster of Differentiation 31 / Platelet Endothelial Cell Adhesion Molecule

BAX:

Bcl-2-Associated X protein 4

SSTR2 / 5:

Somatostatin Receptor 2 / 5

TP53 / p53:

Tumor Protein 53

FGFR1-4:

Fibroblast growth factor receptor 1 / 2 / 3 / 4

STAT3:

Signal transducer and activators of transcription type 3

mTOR:

Mammalian Target Of Rapamycin

IGF-1:

Insulin like Growth Factor-1

PTTG-1:

Pituitary Tumor Transforming Gene protein-1

MAPK:

Mitogen Activated Protein Kinases

ETNK2:

Ethanolamine Kinase 2

MERTK:

Proto-oncogene tyrosine-protein kinase MER

PIP5K1B:

Phosphatidylinositol-4-Phosphate 5-Kinase Type 1 Beta

CDK:

Cyclin-dependent Kinases

CDKN1A / 2A / 1B / 2C:

Cyclin-dependent kinase inhibitor 1A / 2A / 1B / 2C

GADD45:

Growth Arrest and DNA Damage-inducible protein 45

CABLES1:

Cdk5 And Abl Enzyme Substrate 1

TERT:

Telomerase reverse transcriptase

TERC:

Telomerase RNA Component

CD27 / 28 / 37:

Cluster of Differentiation 27 / 28 / 37

ICOS:

Inducible T cell co-stimulator

OX40:

Tumor necrosis factor receptor superfamily 4

CTLA-4:

Cytotoxic T lymphocyte associated protein 4

PD1:

Programmed Death 1

PD-L1:

PD Ligand 1

IL8 / 6 / 1ß:

Interlukin 8 / 6 / 1ß

CCL2 / 3 / 4 / 10 / 22:

C-C Motif Chemokine Ligand 2 / 3 / 4 / 10 / 22

CX3CL1:

C-X3-C motif Chemokine Ligand 1

CXCL1:

C-X-C motif Chemokine Ligand 1

CD8 + T Lymphocytes:

Cytotoxic T Lymphocytes

CD4 + T Lymphocytes:

T-helper cells

NK cells:

Natural Killer cells

M2 macrophages:

Alternative activated macrophages

LDHA:

Lactate Dehydrogenase A

NAD:

Nicotinamide Adenine Dinucleotide

GLUT-1:

Glucose Transporter 1

MMP2 / 9 :

Matrix Metalloproteinase 2 / 9

FASN:

Fatty Acid Synthase

p21:

Cyclin-dependent kinase inhibitor 1

p16:

Cyclin-dependent kinase inhibitor 2A

pRB:

Retinoblastoma protein

E2F:

E2 Factor

TGFß:

Transforming Growth Factor ß

p19:

Teratocarcinoma cell line P19

E-CAD:

E-cadherin

EMT:

Epithelial-Mesenchymal Transition

N-CAD:

N-cadherin / Cadherin-2 / Neural Cadherin

EPCAM:

Epithelial Cell Adhesion Molecule

SMAD3:

Mothers Against Decapentaplegic homolog 3

SNAI2:

Snail Family Transcriptional Repressor 2

PITX2:

Paired Like Homeodomain 2

ECM:

Extracellular Matrix

PKC:

Protein Kinase C

References

  1. Hanahan D, Weinberg R. Hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Lazebnik Y. What are the hallmark of cancer? Nat Rev Cancer. 2010;10:232–3.

    Article  CAS  PubMed  Google Scholar 

  4. Sonnenschein C, Soto AM. The aging of the 2000 and 2011 Hallmarks of cancer reviews: A critique. J Bio Sci. 2013;38:651–63.

    CAS  Google Scholar 

  5. Ahmed-Fouad Y, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7:1016–36.

    Google Scholar 

  6. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  7. Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, et al. Clinical biology of the pituitary adenoma. Endocr Rev. 2022;43:1003–37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patel A. Bening vs malignant tumors. JAMA Oncol. 2020;6:1488.

    Article  PubMed  Google Scholar 

  9. Marino-Enriquez A, Fletcher C. Shouldn’t we care about the biology of benign tumours? Nat Rev Cancer. 2014;14:701–2.

    Article  CAS  PubMed  Google Scholar 

  10. Molitch ME. Diagnosis and treatment of pituitary adenomas: A review. JAMA. 2017;317:516–24.

    Article  PubMed  Google Scholar 

  11. Mercado M, Melgar V, Salame L, Cuenca D. Clinicly non funcioning pituitary adenomas: Pathogenic, diagnostic and therapeutic aspects. Endocrinol Diabetes Nutr. 2017;64:384–95.

    Article  PubMed  Google Scholar 

  12. Ramirez C, Cheng S, Vargas G, Asa SL, Ezzat S, Gonzalez B, Cabrera L, Guinto G, Mercado M. Expression of Ki-67, PTTG1, FGFR4, and SSTR2,3 and 5 in nonfunctioning pituitary adenomas: A high throughput TMA, immunohistochemical study. J Clin Endocrinol Metab. 2012;97:1745–51.

    Article  CAS  PubMed  Google Scholar 

  13. Vargas G, Gonzalez B, Ramirez C, Ferreira A, Espinosa E, Mendoza V, Guinto G, Lopez-Felix B, Zepeda E, Mercado M. Clinical characteristics and treatment outcome of 485 patients with nonfunctioning pituitary macroadenomas. Int J Endocrinol. 2015;2015:756069.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoo F, Kuan EC, Heaney AP, Bergsneider M, Wang MB. Corticotrophic pituitary carcinoma with cervical metastases: case series and literature review. Pituitary. 2018;21:290–301.

    Article  CAS  PubMed  Google Scholar 

  15. Andonegui-Elguera S, Silva-Roman G, Peña-Martinez E, Taniguchi-Ponciano K, Vela-Patiño S, et al. The genomic landscape of corticotroph tumors: from silent adenomas to ACTH-secreting carcinomas. Int J Mol Sci. 2022;23:4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguilera A, Gomez-Gonzalez B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008;9:204–17.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Guzman B, Portocarrero-Ortiz L, Dorantes-Argandar AA, Mercado M. Hereditary pituitary tumor syndomes: Genetic and clinical aspects. Rev Invest Clin. 2020;72:8–18.

    CAS  PubMed  Google Scholar 

  18. Barry S, Korbonits M. Update on the genetics of pituitary tumors. Endocrinol Metab Clin North Am. 2020;49:433–52.

    Article  PubMed  Google Scholar 

  19. Trivellin G, Daly AF, Faucz FR, Yuan B, Rostomyan L, Larco DO, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371:2363-2374.G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wanichi I, Mariani B, Frassetto F, Siqueira SA, Musolino N, Cunha-Neto MB, et al. Cushing’s disease due to somatic USP8 mutations: a systematic review and meta-analysis. Pituitary. 2019;22:435–42.

    Article  PubMed  Google Scholar 

  21. Perez-Rivas LG, Theodoropoulou M, Ferrau F, Nusser C, Kawaguchi K, Stratakis CA, et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing cushing’s disease. J Clin Endocrinol Metab. 2015;100:E997-1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47:31–8.

    Article  CAS  PubMed  Google Scholar 

  23. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340:692–6.

    Article  CAS  PubMed  Google Scholar 

  24. Landis CA, Harsh G, Lyons J, Davis RL, McCormick F, Bourne HR. Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J Clin Endocrinol Metab. 1990;71:1416–20.

    Article  CAS  PubMed  Google Scholar 

  25. Mendoza V, Sosa E, Espinosa-de-Los-Monteros AL, Salcedo M, Guinto G, Cheng S, Sandoval C, Mercado M. GSPalpha mutations in Mexican patients with acromegaly: potential impact on long term prognosis. Growth Horm IGF Res. 2005;15:28–32.

    Article  CAS  PubMed  Google Scholar 

  26. Albani A, Perez-Rivas LG, Dimopoulou C, Zoop S, Colon-Bolea P, Roeber S, et al. The USP8 mutational status may predict long-term remission in patients with Cushing´s disease. Clin Endocrinol (Oxf). 2018. https://doi.org/10.1111/cen.13802.

    Article  PubMed  Google Scholar 

  27. Cui Y, Li C, Jiang Z, Zhang S, Li Q, Liu X, Zhou Li R, et al. Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors. Neuro Oncol. 2021;23:1859–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson ML, Septier A, Letourneur F, et al. Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell. 2020;37:123-134.e5.

    Article  CAS  PubMed  Google Scholar 

  29. Wierinckx A, Roche M, Raverot G, Legras-Lechuer C, Croze S, Nazaret N, et al. Integrated genomic profiling identifies loss of chromosome 11p impacting transcriptomic activity in aggressive pituitary PRL tumors. Brain Pathol. 2011;21:533–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lasolle H, Elsensohn MH, Wierimckx A, Alix E, Bonnefille C, Vasiljevic A, et al. Chromosomal instability in the prediction of pituitary neuroendocrine tumors prognosis. Acta Neuropathol Commun. 2020;8:190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang M, Yang C, Bao X, Wang R. Genetic and epigenetic causes of pituitary adenomas. Front Endocrinol (Lausanne). 2021;11:596554.

    Article  PubMed  Google Scholar 

  32. Taniguchi-Ponciano K, Andonegui-Elguera S, Peña-Martinez E, Silva-Roman G, Vela-Patiño S, et al. Transcriptome and methylome analysis reveals three cellular origins of pituitary tumors. Sci Rep. 2020;10:19373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The emerging role of non-coding RNAs in pituitary gland tumors and meningioma. Cancers (Basel). 2021;13:5987.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Qian Y, Zhang C, Wang W, Qiao Y, Song H, et al. LncRNA LINC00473 is involved in the progression of invasive pituitary adenoma by upregulating KMT5A via ceRNA-mediated miR-502-3p evasion. Cell Death Dis. 2021;12:580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cristina C. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol. 2014;2014:608497.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dai C, Liang S, Sun B, Li Y, Kang J. Anti-VEGF therapy in refractory pituitary adenomas and pituitary carcinomas: A review. Front Oncol. 2021;11:773905.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Li J, Hu Z, Tohti M, Hu Y, Wang S, Li W, Lu Z, Ma C. The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: a study of 197 cases and indications for medical therapy. J Exp Clin Cancer Res. 2014;33:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanchez-Ortiga R, Sanchez-Tejada L, Moreno-Perez O, Riesgo P, Niveiro M, Pico Alfonso AM. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extracellular grpwth and recurrence. Pituitary. 2013;16:370–7.

    Article  CAS  PubMed  Google Scholar 

  39. Arita K. Relationship between intratumoral hemorrhage and overexpression of vascular endothelial growth factor (VEGF) in pituitary adenoma. Hiroshima J Med Sci. 2004;53:23–7.

    CAS  PubMed  Google Scholar 

  40. Mallea-Gil MS, Cristina C, Perez-Millan MI, Rodriguez-Villafane AM, Ballarino C, et al. Invasive giant prolactinoma with loss of therapeutic response to cabergoline: expression of angiogenic markers. Endocr Pathol. 2009;20:35–40.

    Article  CAS  PubMed  Google Scholar 

  41. Zimering MB, Katsumata N, Sato Y, Brandu ML, Aurbach GD, et al. Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: relation to pituitary tumor. J Clin Endocrinol Metab. 1993;76:1182–7.

    CAS  PubMed  Google Scholar 

  42. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA. Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab. 2000;85:1159–62.

    Article  CAS  PubMed  Google Scholar 

  43. Itoh J, Serizawa A, Kawai K, Ishii Y, Teramoto A, Yoshiyuki R, et al. Vascular networks and endothelial cells in the rat experimental pituitary glands and in the human pituitary adenomas. Microsc Res Tech. 2003;60:231–5.

    Article  PubMed  Google Scholar 

  44. Perez-Millan MI, Berner SI, Luque GM, De Bonis C, Sevlever G, Besu-Villalobos D, Cristina C. Enhanced nestin expression and small blood vessels in human pituitary adenomas. Pituitary. 2013;16:303–10.

    Article  CAS  PubMed  Google Scholar 

  45. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saraga-Babic M, Bazina M, Vukojevic K, Bocina I, Stefanovic V. Involvement of pro-apoptotic and anti-apoptotic factors in the early development of the human pituitary gland. Histol Histopathol. 2008;23:1259–68.

    CAS  PubMed  Google Scholar 

  47. Kontogeorgos G, Sambaziotis D, Piaditis G, Karameris A. Apoptosis in human pituitary adenomas: a morphologic and in situ end-labeling study. Mod Pathol. 1997;10:921–6.

    CAS  PubMed  Google Scholar 

  48. Guzzo MF, Carvalho LRS, Bronstein MD. Apoptosis: its role in pituitary development and neoplastic pituitary tissue. Pituitary. 2014;17:157–62.

    Article  CAS  PubMed  Google Scholar 

  49. Xin M, Li R, Xie M, Park D, Owonikoko TK, Sica GL, et al. Small-molecule Bax agonists for cancer therapy. Nat Commun. 2014;5:4935.

    Article  CAS  PubMed  Google Scholar 

  50. Hafezi S, Rahmani M. Targeting BCL-2 in cancer: advances, challenges, and perspectives. Cancers (Basel). 2021;13:1292.

    Article  CAS  PubMed  Google Scholar 

  51. Sambaziotis D, Kapranos N, Kontogeorgos G. Correlation of bcl-2 and bax with apoptosis in human pituitary adenomas. Pituitary. 2003;6:127–33.

    Article  CAS  PubMed  Google Scholar 

  52. Kulig E, Jin L, Qian X, Horvath E, Kovacs K, et al. Apoptosis in nontumorous and neoplastic human pituitaries: expression of the Bcl-2 family of proteins. Am J Pathol. 1999;154:767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mercado M, Espinosa E, Ramirez C. Current status and future directions of pharmacological therapy for acromegaly. Minerva Endocrinol. 2016;41:351–65.

    PubMed  Google Scholar 

  54. Fleuren EDG, Zhang L, Wu J, Daly RJ. The kinome “at large” in cancer. Nat Rev Cancer. 2016;16:83–98.

    Article  CAS  PubMed  Google Scholar 

  55. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Durcan E, Keskin FE, Ozkaya HM, Sirolu S, Sahin S, Korkmaz OP, Gazioglu N, Tanriover N, et al. Fibroblast growth factor Receptor-4 expression in pituitary adenomas is associated with aggressive tumor features. Exp Clin Endocrinol Diabetes. 2022;130:125–33.

    Article  CAS  PubMed  Google Scholar 

  57. Quian ZR, Sano T, Asa SL, Yamada S, Horiguchi H, Tashiro T, et al. Cytoplasmic expression of Fibroblast growth factor receptor-4 in human pituitary adenomas: relation to tumor type, size, proliferation, and invassiveness. J clin Endocrinol Metab. 2004;89:1904–11.

    Article  Google Scholar 

  58. Nakano-Tateno T, Tateno T, Hlaing MM, Zheng L, Yoshimoto K, Yamada S, Asa SL, Ezzat S. FGFR4 polymorphic variants modulate phenotypic features of Cushing disease. Mol Endocrinol. 2014;28:525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jalali S, Monsalves E, Tateno T, Zadeh G. Role of mTOR inhibitors in Growth Hormone-Producing pituitary adenomas harboring different FGFR4 genotypes. Endocrinology. 2016;157:3577–87.

    Article  CAS  PubMed  Google Scholar 

  60. Chen R, Duan J, Li L, Ma Q, Sun Q, Ma J, Li C, et al. mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene. 2017;36:979–88.

    Article  CAS  PubMed  Google Scholar 

  61. Liu C, Nakano-Tateno T, Satou M, Chik C, Tateno T. Emerging role of signal transducer and activator of transcription 3 (STAT3) in pituitary adenomas. Endocr J. 2021;68:1143.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou C, Jiao Y, Wang R, Ren SG, Wawrowsky K, Melmed A. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion. J Clin Invest. 2015;125:1692–702.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A comprehensive review of MAPK: A promising therapeutic target in cancer. Cancers (Basel). 2019;11:1618.

    Article  CAS  PubMed  Google Scholar 

  64. Taniguchi-Ponciano K, Portocarrero-Ortiz LA, Guinto G, Moreno-Jimenez S, Gomez-Apo E, Chavez-Macias L, et al. The kinome, cyclins and cyclin-dependent kinases of pituitary adenomas, a look into the gene expression profile among tumors from different lineages. BMC Med Genomics. 2022;15:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res. 1999;5:2133–9.

    CAS  PubMed  Google Scholar 

  66. Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE. Aberrant expression of G(1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis. 2001;22:1149–54.

    Article  CAS  PubMed  Google Scholar 

  67. Jordan S, Lidhar K, Korbonits M, Lowe DG, Grossman AB. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol. 2000;143:R1-6.

    Article  CAS  PubMed  Google Scholar 

  68. Roussel-Gervais A, Bilodeau S, Vallette S, Berthelet F, Lacroix A, Figarella-Branger D, Brue T, Drouin J. Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol. 2010;24:1835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hossain MG, Iwata T, Mizysawa N, Qian ZR, Shima SWN, Okutsu T, Yamada S, Sano T, Yoshimoto K. Expression of p18 (INK4C) is down-regulated in human pituitary adenomas. Endocr Pathol. 2009;20:114–21.

    Article  CAS  PubMed  Google Scholar 

  70. Simpson DJ, McNicol AM, Murray D, Bahar A, Turner HE, Wass JAH, Esiri MM, Clayton RN, Farrell WE. Molecular pathology shows p16 methylation in nonadenomatous pituitaries from patients with Cushing’s disease. Clin Cancer Res. 2004;10:1780–8.

    Article  CAS  PubMed  Google Scholar 

  71. Aubrey BJ, Strasser A, Kelly GL. Tumor-supressor functions of the TP53 pathway. Cold Spring Harb Prespect Med. 2016;6:a026062.

    Article  Google Scholar 

  72. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER. P53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery. 1996;38:765–70.

    Article  CAS  PubMed  Google Scholar 

  73. Saeger W, Ludecke B, Ludecke DK. Clinical tumor growth and comparison with proliferation markers in non-functioning (inactive) pituitary adenomas. Exp Clin Endocrinol Diabetes. 2008;116:80–5.

    Article  CAS  PubMed  Google Scholar 

  74. Yagnik G, Jahangiri A, Chen R, Wagner JR, Aghi MK. Role of a p53 polymorphism in the development of nonfunctional pituitary adenomas. Mol Cell Endocrinol. 2017;446:81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, et al. Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology. 2011;152:3603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hernandez-Ramirez LC, Gam R, Valdes N, Lodish MB, Pankratz N, Balsalobre A, Gauthier Y, et al. Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing’s disease. Endocr Relat Cancer. 2017;24:379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martins CS, Santana-Lemos BA, Saggioro FP, Neder L, Machado HR, et al. Telomere length and telomerase expression in pituitary tumors. J Endocrinol Invest. 2015;38:1243–6.

    Article  CAS  PubMed  Google Scholar 

  78. Can N, Celik M, Bulbul BY, Sut N, Ozyilmaz F, Ayturk S, et al. TERT expression in pituitary adenomas. Turk Patoloji Derg. 2017;33:103–11.

    CAS  PubMed  Google Scholar 

  79. Yoshino A, Katayama Y, Fukushima T, Watanabe T, Komine C, Yokoyama T, et al. Telomerase activity in pituitary adenomas: significance of telomerase expression in predicting pituitary adenoma recurrence. J Neurooncol. 2003;63:155–62.

    Article  PubMed  Google Scholar 

  80. Miyake Y, Adachi J, Suzuki T, Mishima K, Araki R, Mizuno R, Nishikawa R. TERT promoter methylation is significantly associated with TERT upregulation and disease progression in pituitary adenomas. J Neurooncol. 2019;141:131–8.

    Article  CAS  PubMed  Google Scholar 

  81. Heaphy CM, Bi WL, Coy S, Davis C, Gallia GL, Santagata S, Rodriguez FJ. Telomere length alterations and ATRX/DAXX loss in pituitary adenomas. Mod Pathol. 2020;33:1475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsumoto R, Fukuoka H, Iguchi G, Odake Y, Yoshida K, Bando H, et al. Accelerated telomere shortening in acromegaly; IGF-I induces telomere shortening and cellular senescence. PLoS ONE. 2015;10:e0140189.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chew V, Toh HC, Abastado JP. Immune microenviroment in tumor proegression: characteristics and challenges for therapy. J Oncol. 2012;2012:608406.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mei Y, Bi WL, Greenwald NF, Du Z, Agar NYR, Kaiser UB, et al. Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget. 2016;7:76565–76.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dai C, Liang S, Sun B, Kang J. The progress of immunotherapy in refractory pituitary adenomas and pituitary carcinomas. Front endocrinol. 2020;11:608422.

    Article  Google Scholar 

  86. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, et al. Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun. 2019;7:172.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Heshmati H, Casanova S, Racadot J, Van Effenterre R, et al. Prevalence of lymphocytic infiltrate in 1400 pituitary adenomas. Endocrine J. 1998;45:357–61.

    Article  CAS  Google Scholar 

  88. Lupi I, Manetti L, Caturegli P, Menicagli M, Cosottini M, Iannelli A, et al. Tumor infiltrating lymphocytes but not serum pituitary antibodies are associated with poor clinical outcome after surgery in patients with pituitary adenoma. J Clin Endocrinol Metab. 2010;95:289–96.

    Article  CAS  PubMed  Google Scholar 

  89. Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL. Immune cell infiltrate in pituitary adenomas: more macrophages in larger adenomas and More T cells in growth hormone adenomas. Endocri Pathol. 2015;26:263–72.

    Article  CAS  Google Scholar 

  90. Zhan X, Deciderio DM. Editorial: Molecular network study of Pituitary Adenomas. Front Endocrinol. 2020;11:26.

    Article  Google Scholar 

  91. Wang Z, Guo X, Gao L, Deng K, Lian W, Bao X, et al. The immune profile of Pituitary Adenomas and a novel immune classification for predicting immunotherapy responsiveness. J Clin Endocrinol Metab. 2020;105:e3207–e3223.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vela-Patiño S, Salazar MI, Remba-Shapiro I, Peña-Martinez E, Silva-Roman G, Andonegui-Elguera S, et al. Neuroendocrine-immune interface: interactions of two complex systems in health and disease. Arch Med Res. 2022;53:240–51.

    Article  PubMed  Google Scholar 

  93. Han C, Lin S, Lu X, Xue L, Wu ZB. Tumor-associated macrophages: new horizons for pituitary adenoma researches. Front Endocrinol (Lausanne). 2021;12:785050.

    Article  PubMed  Google Scholar 

  94. Van der Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  Google Scholar 

  95. Miao P, Sheng S, Sun X, Liu J, Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013;65:904–10.

    Article  CAS  PubMed  Google Scholar 

  96. An J, Zhan Y, He J, Zang Z, Zhou Z, Pei X, et al. Lactate dehydrogenase A promotes the invasion and proliferation of pituitary adenoma. Sci Rep. 2017;7:4734.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Feng J, Zhang Q, Zhou Y, Yu S, Hong L, Zhao S, Yang J, et al. Integration of proteomics and metabolomics revealed metabolite-protein networks in ACTH-Secreting pituitary adenoma. Frent Endocrinol (Lausanne). 2018;9:678.

    Article  Google Scholar 

  98. Zhan X, Desiderio DM. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics. 2010;3:13.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mooi WJ, Peeper DS. Oncogene-induced cells senescence-halting on the road to cancer. N Eng J Med. 2006;355:1037–46.

    Article  CAS  Google Scholar 

  100. Mooi WJ. Oncogene-induce cellular senescence: causal factor in the growth arrest of pituitary microadenomas? Horm Res. 2009;71(supp2):78–81.

    CAS  PubMed  Google Scholar 

  101. Liu XL, Ding J, Meng LH. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin. 2018;39:1553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alexsandraki K, Khan MM, Chahal HS, Dalantaeva NS, Trivellin G, Berney DM, Caron P, et al. Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones (Athens). 2012;11:297–307.

    Article  Google Scholar 

  103. Sabatino ME, Petiti JP, del Valle-Sosa L, Perez PA, Gutierrez S, Leimgruber C, Latini A, et al. Evidence of celular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer. 2015;22:299–317.

    Article  CAS  PubMed  Google Scholar 

  104. Arzt E, Chesnokova V, Stalla G, Melmed S. Pituitary adenoma growth: a model for cellular senescence and cytokine action. Cell Cycle. 2009;8:677–8.

    Article  CAS  PubMed  Google Scholar 

  105. Chesnokova V, Melmed S. Pituitary senescence: the evolving role of Pttg. Mol Cell Endocrinol. 2010;326:55–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manojlovic-Gacic E, Skender-Gazibara M, Popovic V, Soldatovic I, Boricic N, Raicevic S, et al. Endocrine Pathol. 2016;27:1–11.

    Article  CAS  Google Scholar 

  107. Chen K, Li G, Kang X, Liu P, Qian L, Shi Y, Osman RA, Tang Z, Zhang G. EMT-related markers in serum exosomes are potential diagnostic biomarkers for invasive pituitary adenomas. Neuropsychiatr Dis Treat. 2021;17:3769–80.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shen X, Liu Q, Xu J, Wang Y. Correlation between the expression of Interleukin-6, STAT3, E-Cadherin and N-Cadherin protein and invasiveness in nonfunctional pituitary adenomas. J Neurol Surg B Skull Base. 2021;82(Suppl 3):e59–69.

    PubMed  Google Scholar 

  109. Jia W, Zhu J, Martin TA, Jiang A, Sanders AJ, Jiang WG. Epithelial-mesenchymal Transition (EMT) markers in human pituitary adenomas indicate a clinical course. Anticancer Res. 2015;35:2635–43.

    PubMed  Google Scholar 

  110. Tamura R, Ohara K, Morimoto Y, Kosugi K, Oishi Y, Sato M, Yoshida K, Toda M. PITX2 expression in non-functional pituitary neuroendocrine tumor with cavernous sinus invasion. Endocr Pathol. 2019;30:81–9.

    Article  CAS  PubMed  Google Scholar 

  111. Yang C, Bao X, Wang R. Role of matrix metalloproteinases in pituitary adenoma invasion. Chin Neurosurg J. 2018;4:2–7.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gonzalez-del Pliego M, Aguirre-Benitez E, Paisano-Ceron K, Valdovinos-Ramirez I, Rangel-Morales C, Rodriguez-Mata V, et al. Expression of Eag1 K+ channel and ErbBs in human pituitary adenomas: cytoskeleton arrangement patterns in cultured cells. Int J Clin Exp Pathol. 2013;6:458–68.

    Google Scholar 

  113. Laporte E, Vennekens A, Vankelecom H. Pituitary remodeling throughout life: are resident stem cells involved? Front Endocrinol (Lausanne). 2021;11:604519.

    Article  PubMed  Google Scholar 

  114. Chen L, Ye H, Wang X, Tang X, Mao Y, Zhao Y, et al. Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett. 2014;349:61–6.

    Article  CAS  PubMed  Google Scholar 

  115. Mertens F, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, Govaere O, et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer. 2015;22:481–504.

    Article  CAS  PubMed  Google Scholar 

  116. Peverelli E, Giardino E, Treppiedi D, Meregalli M, Belicchi M, Vaira V, Corbetta S, et al. Dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists are effective in inhibiting proliferation of progenitor/stem-like cells isolated from nonfunctioning pituitary tumors. Int J Cancer. 2017;140:1870–80.

    Article  CAS  PubMed  Google Scholar 

  117. Budan RM, Georgescu CE. Multiple pituitary adenomas: a systematic review. Front Endocrinol (Lausanne). 2016;7:1.

    Article  PubMed  Google Scholar 

  118. Jastania RA, Alsaad KO, Al-Shraim M, Kovacs K, Asa SL. Double adenomas of the pituitary: transcription factors Pit-1, T-pit, and SF-1 identify cytogenesis and differentiation. Endocr Pathol. 2005;16:187–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All figure except Fig. 1 was created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing. KTP and MM performed the literature search and revised the work. DMR, JK, ACZ, IRS, GSR, SVP, AES, AVP performed the literature search. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Keiko Taniguchi-Ponciano or Moisés Mercado.

Ethics declarations

Conflict of interest

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marrero-Rodríguez, D., Taniguchi-Ponciano, K., Kerbel, J. et al. The hallmarks of cancer… in pituitary tumors?. Rev Endocr Metab Disord 24, 177–190 (2023). https://doi.org/10.1007/s11154-022-09777-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09777-y

Keywords

Navigation