Skip to main content

Advertisement

Log in

Genomic Alterations in Sporadic Pituitary Tumors

  • Neuro-Oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pituitary tumors are undergoing a transformation in histopathologic and molecular classification, coincident with the continued refinement of increasingly powerful methods of genomic annotation and discovery. We highlight novel genomic alterations identified in pituitary adenomas and craniopharyngiomas and discuss their clinical implications.

Recent Findings

Sporadic pituitary adenomas are associated with relatively few recurrent somatic mutations. Recurrent mutations occur largely in subsets of hormone-producing tumors, including GNAS and GPR101 in somatotroph adenomas and USP8 in corticotroph adenomas. Additionally, they manifest with a dichotomous signature of copy number alterations, ranging from almost none to widespread genome instability, while microduplication of chromosome Xq26.3, containing the GNAS gene, defines X-linked acrogigantism. Papillary craniopharyngiomas are defined by BRAFV600E mutations while β-catenin alterations characterize adamantinomatous craniopharyngiomas.

Summary

Genomic annotation of pituitary tumors is defining increasing subsets of neuroendocrine adenohypophyseal tumors and craniopharyngiomas, offering rationale-based pharmacologic targets and potential biomarkers for clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Lopes MBS. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 2017;134(4):521–35. https://doi.org/10.1007/s00401-017-1769-8. Summary of updated WHO pituitary tumor classification, with elimination of prior atypical category, and codification of “high risk” adenoma subtypes.

    Article  CAS  PubMed  Google Scholar 

  2. Mete O, Lopes MB. Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol. 2017;28(3):228–243.

    Article  CAS  PubMed  Google Scholar 

  3. Asa SL, Casar-Borota O, Chanson P, Delgrange E, Earls P, Ezzat S, et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer. 2017;24(4):C5–8. https://doi.org/10.1530/ERC-17-0004.

    Article  CAS  PubMed  Google Scholar 

  4. Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228–30. https://doi.org/10.1126/science.1126100.

    Article  CAS  PubMed  Google Scholar 

  5. Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab. 2007;92(5):1891–6. https://doi.org/10.1210/jc.2006-2513.

    Article  CAS  PubMed  Google Scholar 

  6. Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer. 2005;5(5):367–75. https://doi.org/10.1038/nrc1610.

    Article  CAS  PubMed  Google Scholar 

  7. Wu X, Hua X. Menin, histone h3 methyltransferases, and regulation of cell proliferation: current knowledge and perspective. Curr Mol Med. 2008;8(8):805–15. https://doi.org/10.2174/156652408786733702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tichomirowa MA, Lee M, Barlier A, Daly AF, Marinoni I, Jaffrain-Rea ML, et al. Cyclin-dependent kinase inhibitor 1B (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocr Relat Cancer. 2012;19(3):233–41. https://doi.org/10.1530/ERC-11-0362.

    Article  CAS  PubMed  Google Scholar 

  9. Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet. 2013;9(3):e1003350. https://doi.org/10.1371/journal.pgen.1003350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song ZJ, Reitman ZJ, Ma ZY, Chen JH, Zhang QL, Shou XF, et al. The genome-wide mutational landscape of pituitary adenomas. Cell Res. 2016;26(11):1255–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Ma ZY, Song ZJ, Chen JH, Wang YF, Li SQ, Zhou LF, et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015;25(3):306–17. https://doi.org/10.1038/cr.2015.20. Discovery of novel oncogenic driver mutation underlying a subset of Cushing’s disease, as a possible therapeutic target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47(1):31–8. https://doi.org/10.1038/ng.3166. Discovery of novel oncogenic driver mutation underlying a subset of Cushing’s disease, with elaboration of mechanism.

    Article  CAS  PubMed  Google Scholar 

  13. • Trivellin G, Daly AF, Faucz FR, Yuan B, Rostomyan L, Larco DO, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363–74. https://doi.org/10.1056/NEJMoa1408028. Report of novel mutation responsible for a subset of acromegaly patients and report of new pediatric syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi Y, Mizumoto M, Akutsu H, Takano S, Matsumura A, Okumura T, et al. Hyperfractionated high-dose proton beam radiotherapy for clival chordomas after surgical removal. Br J Radiol. 2016;89(1063):20151051. https://doi.org/10.1259/bjr.20151051.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vallar L, Spada A, Giannattasio G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature. 1987;330(6148):566–8. https://doi.org/10.1038/330566a0.

    Article  CAS  PubMed  Google Scholar 

  16. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340(6236):692–6. https://doi.org/10.1038/340692a0.

    Article  CAS  PubMed  Google Scholar 

  17. Clementi E, Malgaretti N, Meldolesi J, Taramelli R. A new constitutively activating mutation of the Gs protein alpha subunit-gsp oncogene is found in human pituitary tumours. Oncogene. 1990;5(7):1059–61.

    CAS  PubMed  Google Scholar 

  18. Ronchi CL, Peverelli E, Herterich S, Weigand I, Mantovani G, Schwarzmayr T, et al. Landscape of somatic mutations in sporadic GH-secreting pituitary adenomas. Eur J Endocrinol. 2016;174(3):363–72. https://doi.org/10.1530/EJE-15-1064.

    Article  CAS  PubMed  Google Scholar 

  19. • Bi WL, Horowtiz P, Greenwald N, Abedalthagafi M, Agarwalla PK, Gibson WJ, et al. Landscape of genomic alterations in pituitary adenomas. Clin Cancer Res. 2016;23(7):1841–51. https://doi.org/10.1158/1078-0432.CCR-16-0790. This study highlights a dichotomous pattern among pituitary adenomas, as stratified by the presence or absence of genome disruption.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yacqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol. 2012;8(8):486–94. https://doi.org/10.1038/nrendo.2012.54.

    Article  CAS  PubMed  Google Scholar 

  21. Bi WL, Greenwald NF, Ramkissoon SH, Abedalthagafi M, Coy SM, Ligon KL, et al. Clinical identification of oncogenic drivers and copy number alterations in pituitary tumors. Endocrinology. 2017;158(7):2284–2291.

    Article  PubMed  Google Scholar 

  22. • Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161–5. https://doi.org/10.1038/ng.2868. Discovery of targetable oncogenic mutation in majority of papillary craniopharyngiomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larkin SJ, Preda V, Karavitaki N, Grossman A, Ansorge O. BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol. 2014;127(6):927–9. https://doi.org/10.1007/s00401-014-1270-6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19. https://doi.org/10.1056/NEJMoa1002011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703. https://doi.org/10.1056/NEJMoa1210093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14. https://doi.org/10.1056/NEJMoa1112302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brastianos PK, Shankar GM, Gill CM, Taylor-Weiner A, Nayyar N, Panka DJ, et al. Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J Natl Cancer Inst. 2015;108(2).

  28. Aylwin SJ, Bodi I, Beaney R. Pronounced response of papillary craniopharyngioma to treatment with vemurafenib, a BRAF inhibitor. Pituitary. 2016;19(5):544–6. https://doi.org/10.1007/s11102-015-0663-4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to Winona W. Wu for illustration assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian F. Dunn.

Ethics declarations

Conflict of Interest

Wenya Linda Bi, Alexandra Giantini Larsen, and Ian F. Dunn declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, W.L., Larsen, A.G. & Dunn, I.F. Genomic Alterations in Sporadic Pituitary Tumors. Curr Neurol Neurosci Rep 18, 4 (2018). https://doi.org/10.1007/s11910-018-0811-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0811-0

Keywords

Navigation