Skip to main content

Advertisement

Log in

Expression of p18INK4C is Down-regulated in Human Pituitary Adenomas

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinase inhibitors represented by the INK4 family comprising p16INK4A, p15INK4B, p18INK4C, and p19INK4D are regulators of the cell cycle shown to be aberrant in many types of cancer. Mice lacking p18Ink4c exhibit a series of phenotypes including the development of widespread organomegaly and pituitary adenomas. The objective of our study is to examine the role of p18INK4C in the pathogenesis of human pituitary tumors. The protein and mRNA levels of p18INK4C were examined by immunohistochemistry and real-time reverse transcription-polymerase chain reaction, respectively. The methylation status of the p18INK4C gene promoter and somatic mutations of the p18INK4C gene were also investigated. p18INK4C protein expression was lost or significantly reduced in 64% of pituitary adenomas compared with levels in normal pituitary glands. p18INK4C mRNA levels were low in all ACTH adenomas and non-functioning (NF)-FSH and in 42%, 70% and 66% of GH, PRL, and subtype 3 adenomas, respectively. p18INK4C mRNA levels were significantly associated with p18INK4C protein levels. Neither methylated promoters in pituitary adenomas, except in one NF-FSH adenoma, nor somatic mutations of the p18INK4C gene in any pituitary adenomas were detected. The down-regulation of p18INK4C expression may contribute to the tumorigenesis of pituitary adenomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heaney AP, Melmed S. Molecular targets in pituitary tumours. Nat Rev Cancer 4:285-295, 2004. doi:10.1038/nrc1320

    Article  PubMed  CAS  Google Scholar 

  2. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2:836-849, 2002. doi:10.1038/nrc926

    Article  PubMed  CAS  Google Scholar 

  3. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Katsuragi K, Kinoshita M, Saito S, Itakura M. Ras mutations in endocrine tumors: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Jpn J Cancer Res 83:1057-1062, 1992.

    PubMed  CAS  Google Scholar 

  4. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Saito S, Itakura M. Role of p53 mutations in endocrine tumorigenesis: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Cancer Res 52:5061-5064, 1992.

    PubMed  CAS  Google Scholar 

  5. Tanaka C, Kimura T, Yang P, Moritani M, Yamaoka T, Yamada S, Sano T, Yoshimoto K, Itakura M. Analysis of loss of heterozygosity on chromosome 11 and infrequent inactivation of MEN1 gene in sporadic pituitary adenomas. J Clin Endocrinol Metab 83:2631-2634, 1998. doi:10.1210/jc.83.8.2631

    Article  PubMed  CAS  Google Scholar 

  6. Yoshimoto K, Tanaka C, Moritani M, Shimizu E, Yamaoka T, Yamada S, Sano T, Itakura M. Infrequent detectable somatic mutations of the RET and glial cell line-derived neurotrophic factor (GDNF) genes in human pituitary adenomas. Endocr J 46:199-207, 1999. doi:10.1507/endocrj.46.199

    Article  PubMed  CAS  Google Scholar 

  7. Yamasaki H, Mizusawa N, Nagahiro S, Yamada S, Sano T, Itakura M, Yoshimoto K. GH-secreting pituitary adenomas infrequently contain inactivating mutations of PRKAR1A and LOH of 17q23-24. Clin Endocrinol 58:464-470, 2003. doi:10.1046/j.1365-2265.2003.01740.x

    Article  CAS  Google Scholar 

  8. Honda S, Tanaka-Kosugi C, Yamada S, Sano T, Matsumoto T, Itakura M, Yoshimoto K. Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr J 50:309-318, 2003. doi:10.1507/endocrj.50.309

    Article  PubMed  CAS  Google Scholar 

  9. Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TM, Salmela PI, Paschke R, Gündogdu S, De Menis E, Mäkinen MJ, Launonen V, Karhu A, Aaltonen LA. Pituitary adenoma predisposition caused by germ-line mutations in the AIP gene. Science 312:1228-1230, 2006. doi:10.1126/science.1126100

    Article  PubMed  CAS  Google Scholar 

  10. Daly AF, Jaffrain-Rea A, Valdes-Socin H, Ciccarelli A, Rohmer V, Tamburrano G, Borson-Chazot C, Estour B, Ciccarelli E, Brue T, Ferolla P, Emy P, Colao A, De Menis E, Lecomte P, Penfornis F, Delemer B, Bertherat J, Wemeau JL, De Herder W, Archambeaud F, Stevenaert A, Calender A, Murat A, Cavagnini F, Beckers A. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92:1891-1896, 2007. doi:10.1210/jc.2006-2513

    Article  PubMed  CAS  Google Scholar 

  11. Iwata T, Yamada S, Mizusawa N, Golam HM, Sano T, Yoshimoto K. The aryl hydrocarbon receptor-interacting protein gene is rarely mutated in sporadic GH-secreting adenomas. Clin Endocrinol 66:499-502, 2007.

    CAS  Google Scholar 

  12. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S. Pituitary tumor transforming gene expression in pituitary adenomas. J Clin Endocrinol Metab 84:761-767, 1999. doi:10.1210/jc.84.2.761

    Article  PubMed  CAS  Google Scholar 

  13. Qian ZR, Sano T, Asa SL, Yamada S, Horiguchi H, Tashiro T, Li CC, Hirokawa M, Kovacs K, Ezzat S. Cytoplasmic expression of fibroblast growth factor receptor-4 in human pituitary adenomas: relation to tumor type, size, proliferation, and invasiveness. J Clin Endocrinol Metab 89:1904-1911, 2004. doi:10.1210/jc.2003-031489

    Article  PubMed  CAS  Google Scholar 

  14. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770-1783, 2006. doi:10.1200/JCO.2005.03.7689

    Article  PubMed  CAS  Google Scholar 

  15. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602:73-87, 2002.

    PubMed  CAS  Google Scholar 

  16. Farrell WE, Clayton RN. Epigenetic change in pituitary tumorigenesis. Endocr Relat Cancer 10:323-330, 2003. doi:10.1677/erc.0.0100323

    Article  PubMed  CAS  Google Scholar 

  17. Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neuro-Oncol 83:153-162, 2007. doi:10.1007/s11060-006-9316-9

    Article  CAS  Google Scholar 

  18. Woloschak M, Yu A, Xiao J, Post KD. Frequent loss of the P16INK4a gene product in human pituitary tumors. Cancer Res 56:2493-2496, 1996.

    PubMed  CAS  Google Scholar 

  19. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y. CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899-2911, 1998. doi:10.1101/gad.12.18.2899

    Article  PubMed  CAS  Google Scholar 

  20. Bai F, Pei X, Pandolfi PP, Xiong Y. p18Ink4c and Pten constrain a positive regulatory loop between cell growth and cell cycle control. Mol Cell Biol 26:4564-4576, 2006. doi:10.1128/MCB.00266-06

    Article  PubMed  CAS  Google Scholar 

  21. Bai F, Pei XH, Nishikawa T, Smith MD, Xiong Y. p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol Cell Biol 27:1495-1504, 2007. doi:10.1128/MCB.01764-06

    Article  PubMed  CAS  Google Scholar 

  22. van Veelen W, Gasteren CJ, Action DS, Franklin DS, Berger R, Lips CJ, Höppener JW. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. Cancer Res 68:1329-1337, 2008. doi:10.1158/0008-5472.CAN-07-5754

    Article  PubMed  Google Scholar 

  23. Hardy J. Transsphenoidal microsurgical treatment of pituitary tumors. In: Linfoot JA, ed. Recent advances in the diagnosis and treatment of pituitary tumors. NY: Raven Press, 1979; 375-388.

    Google Scholar 

  24. Bartkova J, Thullberg M, Rajpert-De Meyts E, Skakkebaek NE, Bartek J. Cell cycle regulators in testicular cancer: loss of p18INK4C marks progression from carcinoma in situ to invasive germ cell tumours. Int J Cancer 85:370-375, 2000. doi:10.1002/(SICI)1097-0215(20000201)85:3<370::AID-IJC13>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  25. Sánchez-Aguilera A, Delgado J, Camacho FI, Sánchez-Beato M, Sánchez L, Montalbán C, Fresno MF, Martín C, Piris MA, García JF. Silencing of the p18INK4C gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas. Blood 103:2351-2357, 2004. doi:10.1182/blood-2003-07-2356

    Article  PubMed  Google Scholar 

  26. Morishita A, Masaki T, Yoshiji H, Nakai S, Ogi T, Miyauchi Y, Yoshida S, Funaki T, Uchida N, Kita Y, Funakoshi F, Usuki H, Okada S, Izuishi K, Watanabe S, Kurokohchi K, Kuriyama S. Reduced expression of cell cycle regulator p18INK4C in human hepatocellular carcinoma. Hepatology 40:677-686, 2004. doi:10.1002/hep.20337

    Article  PubMed  CAS  Google Scholar 

  27. Uziel T, Zindy F, Xie S, Lee Y, Forget A, Magdaleno S, Rehg JE, Calabrese C, Solecki D, Eberhart CG, Sherr SE, Plimmer S, Clifford SC, Hatten ME, McKinnon PJ, Gilbertson RJ, Curran T, Sherr CJ, Roussel MF. The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes Dev 19:2656-2667, 2005. doi:10.1101/gad.1368605

    Article  PubMed  CAS  Google Scholar 

  28. Solomon DA, Kim JS, Jenkins S, Ressom H, Huang M, Coppa N, Mabanta L, Bigner D, Yan H, Jean W, Waldman T. Identification of p18INK4c as a tumor suppressor gene in glioblastoma multiforme. Cancer Res 68:2564-2569, 2008. doi:10.1158/0008-5472.CAN-07-6388

    Article  PubMed  CAS  Google Scholar 

  29. Kirsch M, Mörz M, Pinzer T, Schackert HK, Schackert G. Frequent loss of the CDKN2C (p18INK4c) gene product in pituitary adenomas. Genes Chromosomes Cancer 48:143-154, 2009. doi:10.1002/gcc.20621

    Article  PubMed  CAS  Google Scholar 

  30. Morris DG, Musat M, Czirják S, Hanzély Z, Lillington DM, Korbontís M, Grossman AB. Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143-151, 2005. doi:10.1530/eje.1.01937

    Article  PubMed  CAS  Google Scholar 

  31. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427-5440, 2002. doi:10.1038/sj.onc.1205600

    Article  PubMed  CAS  Google Scholar 

  32. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821-9826, 1996. doi:10.1073/pnas.93.18.9821

    Article  PubMed  CAS  Google Scholar 

  33. Shames DS, Minna JD, Gazdar AF. Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Lett 251:187-198, 2007. doi:10.1016/j.canlet.2006.10.014

    Article  PubMed  CAS  Google Scholar 

  34. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosines residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827-1831, 1992. doi:10.1073/pnas.89.5.1827

    Article  PubMed  CAS  Google Scholar 

  35. Blais A, Monte D, Pouliot F, Labrie C. Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2F1 and Sp1. J Biol Chem 277:31679-31693, 2002. doi:10.1074/jbc.M204554200

    Article  PubMed  CAS  Google Scholar 

  36. Tallack MR, Keys JR, Perkins AC. Erythroid krüppel-like factor regulates the G1 cyclin-dependent kinase inhibitor p18INK4c. J Mol Biol 369:313-321, 2007. doi:10.1016/j.jmb.2007.02.109

    Article  PubMed  CAS  Google Scholar 

  37. Joshi PP, Kulkarni MV, Yu BK, Smith KR, Norton DL, Veelen W, Höppener JW, Franklin DS. Simultaneous downregulation of CDK inhibitors p18Ink4c and p27Kip1 is required for MEN2A-RET-mediated mitogenesis. Oncogene 26:554-570, 2007. doi:10.1038/sj.onc.1209811

    Article  PubMed  CAS  Google Scholar 

  38. Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, Meyerson M, Kim SK. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 102:14659-14664, 2005. doi:10.1073/pnas.0503484102

    Article  PubMed  CAS  Google Scholar 

  39. Miller CW, Aslo A, Campbell MJ, Kawamata N, Lampkin BC, Koeffler HP. Alterations of the p15, p16, and p18 genes in osteosarcoma. Cancer Genet Cytogenet 86:136-142, 1996. doi:10.1016/0165-4608(95)00216-2

    Article  PubMed  CAS  Google Scholar 

  40. Tahara H, Smith AP, Gaz RD, Zariwala M, Xiong Y, Arnold A. Parathyroid tumor suppressor on 1p: analysis of the p18 cyclin-dependent kinase inhibitor gene as a candidate. J Bone Miner Res 12:1330-1334, 1997. doi:10.1359/jbmr.1997.12.9.1330

    Article  PubMed  CAS  Google Scholar 

  41. Lindberg D, Akerstorm G, Westin G. Mutational analysis of p27 (CDKN1B) and p18 (CDKN2C) in sporadic pancreatic endocrine tumors argues against tumor-suppressor function. Neoplasia 9:533-535, 2007. doi:10.1593/neo.07328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from the Foundation for Growth Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Yoshimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.G., Iwata, T., Mizusawa, N. et al. Expression of p18INK4C is Down-regulated in Human Pituitary Adenomas. Endocr Pathol 20, 114–121 (2009). https://doi.org/10.1007/s12022-009-9076-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-009-9076-0

Keywords

Navigation