Giustina A, Adler RA, Binkley N, Bouillon R, Ebeling PR, Lazaretti-Castro M, Marcocci C, Rizzoli R, Sempos CT, Bilezikian JP. Controversies in Vitamin D: summary statement from an international conference. J Clin Endocrinol Metab. 2019;104(2):234–40.
Article
PubMed
Google Scholar
Giustina A, Adler RA, Binkley N, Bollerslev J, Bouillon R, Dawson-Hughes B, Ebeling PR, Feldman D, Formenti AM, Lazaretti-Castro M, Marcocci C, Rizzoli R, Sempos CT, Bilezikian JP. Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord. 2020;21(1):89–116.
Giustina A, Bouillon R, Binkley N, Sempos C, Adler RA, Bollerslev J, Dawson-Hughes B, Ebeling PR, Feldman D, Heijboer A, Jones G, Kovacs CS, Lazaretti-Castro M, Lips P, Marcocci C, Minisola S, Napoli N, Rizzoli R, Scragg R, White JH, Formenti AM, Bilezikian JP. Controversies in Vitamin D: a statement from the third international conference. JBMR Plus. 2020;4(12): e10417. https://doi.org/10.1002/jbm4.10417.PMID:33354643;PMCID:PMC7745884.
Article
PubMed
PubMed Central
Google Scholar
Bouillon R, Marcocci C, Carmeliet G, et al. Skeletal and extraskeletal actions of Vitamin D: current evidence and outstanding questions. Endocr Rev. 2019;40(4):1109–51. https://doi.org/10.1210/er.2018-00126.
Article
PubMed
Google Scholar
Puig-Domingo M, Marazuela M, Yildiz BO, Giustina A. COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine. 2021 May;72(2):301–316. https://doi.org/10.1007/s12020-021-02734-w. Epub 2021 May 8. PMID: 33963516; PMCID: PMC8105151.
di Filippo L, Frara S, Giustina A. The emerging osteo-metabolic phenotype of COVID-19: clinical and pathophysiological aspects. Nat Rev Endocrinol. 2021 Jun 2:1–2. https://doi.org/10.1038/s41574-021-00516-y. Epub ahead of print. PMID: 34079100; PMCID: PMC8170860.
Hutchings N, Babalyan V, Baghdasaryan S, Qefoyan M, Sargsyants N, Aghajanova E, Martirosyan A, Harutyunyan R, Lesnyak O, Formenti AM, Giustina A, Bilezikian JP. Patients hospitalized with COVID-19 have low levels of 25-hydroxyvitamin D. Endocrine. 2021 Feb;71(2):267–269. https://doi.org/10.1007/s12020-020-02597-7. Epub 2021 Jan 16. PMID: 33452994; PMCID: PMC7811339.
Bilezikian JP, Bikle D, Hewison M, Lazaretti-Castro M, Formenti AM, Gupta A, Madhavan MV, Nair N, Babalyan V, Hutchings N, Napoli N, Accili D, Binkley N, Landry DW, Giustina A. Mechanisms in endocrinology: Vitamin D and COVID-19. Eur J Endocrinol. 2020;183(5):R133–47. https://doi.org/10.1530/EJE-20-0665 (PMID: 32755992).
CAS
Article
PubMed
Google Scholar
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. https://doi.org/10.1152/physrev.00014.2015.
CAS
Article
PubMed
Google Scholar
Mazziotti G, Maffezzoni F, Giustina A. Vitamin D-binding protein: one more piece in the puzzle of acromegalic osteopathy? Endocrine. 2016;52(2):183–6. https://doi.org/10.1007/s12020-016-0890-0 (Epub 2016 Feb 22 PMID: 26899438).
CAS
Article
PubMed
Google Scholar
Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523(1):9–18. https://doi.org/10.1016/j.abb.2011.11.003.
CAS
Article
PubMed
Google Scholar
Bouillon, R. Vitamin D status in Africa is worse than in other continents. Lancet Global Health. https://doi.org/10.1016/S2214-109X(19)30492-9.
Murayama A, Takeyama K, Kitanaka S, et al. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology. 1999;140(5):2224–31. https://doi.org/10.1210/endo.140.5.6691.
CAS
Article
PubMed
Google Scholar
Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35. https://doi.org/10.1359/JBMR.0301264.
CAS
Article
PubMed
Google Scholar
Blau JE, Collins MT. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. 2015;16(2):165–74. https://doi.org/10.1007/s11154-015-9318-z.
CAS
Article
PubMed
Google Scholar
Bouillon R. Free or total 25OHD as marker for Vitamin D status? J Bone Miner Res. 2016;31(6):1124–7. https://doi.org/10.1002/jbmr.2871.
Article
PubMed
Google Scholar
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29. https://doi.org/10.1016/j.chembiol.2013.12.016.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sempos CT, Binkley N. 25-Hydroxyvitamin D assay standardisation and vitamin D guidelines paralysis. Public Health Nutr. 2020;23(7):1153–64. https://doi.org/10.1017/S1368980019005251.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carter GD, Berry J, Durazo-Arvizu R, et al. Hydroxyvitamin D assays: An historical perspective from DEQAS. J Steroid Biochem Mol Biol. 2018;177:30–5. https://doi.org/10.1016/j.jsbmb.2017.07.018.
CAS
Article
PubMed
Google Scholar
Sempos CT, Heijboer AC, Bikle DD, et al. Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. Br J Clin Pharmacol. 2018;84(10):2194–2207. https://doi.org/10.1111/bcp.13652.
Smith TJ, Tripkovic L, Damsgaard CT, et al. Estimation of the dietary requirement for vitamin D in adolescents aged 14–18 y: a dose-response, double-blind, randomized placebo-controlled trial. Am J Clin Nutr. 2016;104(5):1301–9. https://doi.org/10.3945/ajcn.116.138065.
CAS
Article
PubMed
Google Scholar
Cashman KD, Kiely ME, Andersen R, et al. Individual participant data (IPD)-level meta-analysis of randomised controlled trials with vitamin D-fortified foods to estimate Dietary Reference Values for vitamin D. Eur J Nutr. 2021;60(2):939–59. https://doi.org/10.1007/s00394-020-02298-x.
CAS
Article
PubMed
Google Scholar
Chakhtoura M, Akl EA, El Ghandour S, et al. Impact of vitamin D replacement in adults and elderly in the Middle East and North Africa: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2017;28(1):35–46. https://doi.org/10.1007/s00198-016-3837-7.
CAS
Article
PubMed
Google Scholar
Gallagher JC, Sai A, Templin T 2nd, Smith L. Dose response to vitamin D supplementation in postmenopausal women: a randomized trial [published correction appears in Ann Intern Med. 2012 May 1;156(9):672]. Ann Intern Med. 2012;156(6):425–437. https://doi.org/10.7326/0003-4819-156-6-201203200-00005.
Migliaccio S, Di Nisio A, Mele C, et al. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019;9(1):20–31. https://doi.org/10.1038/s41367-019-0010-8.
Article
PubMed
PubMed Central
Google Scholar
Pramono A, Jocken JWE, Essers YPG, Goossens GH, Blaak EE. Vitamin D and tissue-specific insulin sensitivity in humans with overweight/obesity. J Clin Endocrinol Metab. 2019;104(1):49–56. https://doi.org/10.1210/jc.2018-00995.
Article
PubMed
Google Scholar
Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes. 2012;36(3):387–96.
CAS
Article
Google Scholar
Park CY, Han SN. The role of Vitamin D in adipose tissue biology: adipocyte differentiation, energy metabolism, and inflammation. J Lipid Atheroscler. 2021;10(2):130–44. https://doi.org/10.12997/jla.2021.10.2.130.
Article
PubMed
PubMed Central
Google Scholar
Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16(4):341–9. https://doi.org/10.1111/obr.12239.
CAS
Article
PubMed
Google Scholar
Hajhashemy Z, Shahdadian F, Ziaei R, Saneei P. Serum vitamin D levels in relation to abdominal obesity: a systematic review and dose-response meta-analysis of epidemiologic studies. Obes Rev. 2021;22(2): e13134. https://doi.org/10.1111/obr.13134.
CAS
Article
PubMed
Google Scholar
Formenti AM, Dalla Volta A, di Filippo L, Berruti A, Giustina A. Effects of medical treatment of prostate cancer on bone health. Trends Endocrinol Metab. 2021;32(3):135–58. https://doi.org/10.1016/j.tem.2020.12.004.
CAS
Article
PubMed
Google Scholar
Monteverdi S, Pedersini R, Gallo F, et al. The interaction of lean body mass with fat body mass is associated with vertebral fracture prevalence in women with early breast cancer undergoing aromatase inhibitor therapy. JBMR Plus. 2020;5(2):e10440. Published 2020 Dec 21. https://doi.org/10.1002/jbm4.10440.
de Oliveira LF, de Azevedo LG, da Mota SJ, de Sales LPC, Pereira-Santos M. Obesity and overweight decreases the effect of vitamin D supplementation in adults: systematic review and meta-analysis of randomized controlled trials. Rev Endocr Metab Disord. 2020;21(1):67–76. https://doi.org/10.1007/s11154-019-09527-7.
CAS
Article
PubMed
Google Scholar
Tayde A, Mittal M, Khadgawat R, Sharma S, Sreenivas V, Rai A. Response to single oral dose vitamin D in obese vs non-obese vitamin D-deficient children. Eur J Pediatr. 2021;180(4):1043–50. https://doi.org/10.1007/s00431-020-03831-04.
CAS
Article
PubMed
Google Scholar
Aliashrafi S, Ebrahimi-Mameghani M, Jafarabadi MA, Lotfi-Dizaji L, Vaghef-Mehrabany E, Arefhosseini SR. Effect of high-dose vitamin D supplementation in combination with weight loss diet on glucose homeostasis, insulin resistance, and matrix metalloproteinases in obese subjects with vitamin D deficiency: a double-blind, placebo-controlled, randomized clinical trial. Appl Physiol Nutr Metab. 2020;45(10):1092–8. https://doi.org/10.1139/apnm-2018-0773.
CAS
Article
PubMed
Google Scholar
Rajakumar K, Moore CG, Khalid AT, et al. Effect of vitamin D3 supplementation on vascular and metabolic health of vitamin D-deficient overweight and obese children: a randomized clinical trial. Am J Clin Nutr. 2020;111(4):757–68. https://doi.org/10.1093/ajcn/nqz340.
Article
PubMed
PubMed Central
Google Scholar
Bouillon R, Carmeliet G, Lieben L, et al. Vitamin D and energy homeostasis: of mice and men. Nat Rev Endocrinol. 2014;10(2):79–87. https://doi.org/10.1038/nrendo.2013.226.
CAS
Article
PubMed
Google Scholar
Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr. 2012;108(11):1915–23. https://doi.org/10.1017/S0007114512003285.
CAS
Article
PubMed
Google Scholar
Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev. 2021;37(2): e3377. https://doi.org/10.1002/dmrr.3377.
CAS
Article
PubMed
Google Scholar
Favre G, Legueult K, Pradier C, et al. Visceral fat is associated to the severity of COVID-19. Metabolism. 2021;115: 154440. https://doi.org/10.1016/j.metabol.2020.154440.
CAS
Article
PubMed
Google Scholar
di Filippo L, Allora A, Doga M, et al. Vitamin D levels associate with blood glucose and BMI in COVID-19 patients predicting disease severity [published online ahead of print, 2021 Aug 12]. J Clin Endocrinol Metab. 2021;dgab599. https://doi.org/10.1210/clinem/dgab599.
Di Filippo L, De Lorenzo R, Cinel E, et al. Weight trajectories and abdominal adiposity in COVID-19 survivors with overweight/obesity. Int J Obes (Lond). 2021;45(9):1986–94. https://doi.org/10.1038/s41366-021-00861-y.
CAS
Article
Google Scholar
Benaiges D, Más-Lorenzo A, Goday A, et al. Laparoscopic sleeve gastrectomy: More than a restrictive bariatric surgery procedure? World J Gastroenterol. 2015;21(41):11804–14. https://doi.org/10.3748/wjg.v21.i41.11804.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schollenberger AE, Heinze JM, Meile T, Peter A, Königsrainer A, Bischoff SC. Markers of bone metabolism in obese individuals undergoing laparoscopic sleeve gastrectomy. Obes Surg. 2015;25(8):1439–45. https://doi.org/10.1007/s11695-014-1509-2.
Article
PubMed
Google Scholar
Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248-256.e5. https://doi.org/10.1016/j.amjmed.2008.09.041.
Article
PubMed
Google Scholar
Stein EM, Carrelli A, Young P, et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab. 2013;98(2):541–9. https://doi.org/10.1210/jc.2012-2394.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carlin AM, Rao DS, Yager KM, Genaw JA, Parikh NJ, Szymanski W. Effect of gastric bypass surgery on vitamin D nutritional status. Surg Obes Relat Dis. 2006;2(6):638–42. https://doi.org/10.1016/j.soard.2006.09.003.
Article
PubMed
Google Scholar
Volonakis S, Koika V, Tzavelas G, Skopeliti M, Skroubis G, Kalfarentzos F, Alexandrides T. Adequate vitamin D supplementation does not ameliorate bone loss following long limb-biliopancreatic diversion in morbidly obese women. Hormones (Athens). 2021 Jun;20(2):315–21. https://doi.org/10.1007/s42000-020-00254-2. Epub 2020 Nov 5 PMID: 33155141.
Article
Google Scholar
Davidson ZE, Walker KZ, Truby H. Clinical review: Do glucocorticosteroids alter vitamin D status? A systematic review with meta-analyses of observational studies. J Clin Endocrinol Metab. 2012;97(3):738–44. https://doi.org/10.1210/jc.2011-2757.
CAS
Article
PubMed
Google Scholar
Frara S, Allora A, di Filippo L, Formenti AM, Loli P, Polizzi E, Tradati D, Ulivieri FM, Giustina A. Osteopathy in mild adrenal cushing's syndrome and cushing disease. Best Pract Res Clin Endocrinol Metab. 2021 Mar;35(2):101515. https://doi.org/10.1016/j.beem.2021.101515. Epub 2021 Mar 10. PMID: 33795196.
Bonadonna S, Burattin A, Nuzzo M, et al. Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur J Endocrinol. 2005;152(2):199–205. https://doi.org/10.1530/eje.1.01841.
CAS
Article
PubMed
Google Scholar
Mazziotti G, Formenti AM, Adler RA, Bilezikian JP, Grossman A, Sbardella E, Minisola S, Giustina A. Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine. 2016;54(3):603–11. https://doi.org/10.1007/s12020-016-1146-8 (Epub 2016 Oct 20 PMID: 27766553).
CAS
Article
PubMed
Google Scholar
Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28. https://doi.org/10.1007/s00198-007-0394-0 (Epub 2007 Jun 14 PMID: 17566815).
CAS
Article
PubMed
Google Scholar
Ebeling PR, Adler RA, Jones G, Liberman UA, Mazziotti G, Minisola S, Munns CF, Napoli N, Pittas AG, Giustina A, Bilezikian JP, Rizzoli R. Management of endocrine disease: therapeutics of Vitamin D. Eur J Endocrinol. 2018;179(5):R239–59. https://doi.org/10.1530/EJE-18-0151 (PMID: 30131372).
CAS
Article
PubMed
Google Scholar
Heaney RP. The Vitamin D requirement in health and disease. J Steroid Biochem Mol Biol. 2005;97(1–2):13–9. https://doi.org/10.1016/j.jsbmb.2005.06.020.
CAS
Article
PubMed
Google Scholar
Ortego-Jurado M, Callejas-Rubio JL, Ríos-Fernández R, et al. Oral calcidiol is more effective than cholecalciferol supplementation to reach adequate 25(OH)D levels in patients with autoimmune diseases chronically treated with low doses of glucocorticoids: a “Real-Life” study. J Osteoporos. 2015;2015: 729451. https://doi.org/10.1155/2015/729451.
Article
PubMed
PubMed Central
Google Scholar
de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27. https://doi.org/10.1038/nrgastro.2015.186.
CAS
Article
PubMed
Google Scholar
Fletcher J. Vitamin D deficiency in patients with inflammatory bowel disease. Br J Nurs. 2016;25(15):846–51. https://doi.org/10.12968/bjon.2016.25.15.846.
Article
PubMed
Google Scholar
Manelli F, Giustina A. Glucocorticoid-induced osteoporosis. Trends Endocrinol Metab. 2000;11(3):79–85. https://doi.org/10.1016/s1043-2760(00)00234-4.
CAS
Article
PubMed
Google Scholar
Ulitsky A, Ananthakrishnan AN, Naik A, Skaros S, Zadvornova Y, Binion DG, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. JPEN J Parenter Enteral Nutr. 2011;35(3):308–16.
CAS
Article
PubMed
Google Scholar
Raftery T, Merrick M, Healy M, Mahmud N, O’Morain C, Smith S, et al. Vitamin D status is associated with intestinal inflammation as measured by fecal calprotectin in Crohn’s disease in clinical remission. Dig Dis Sci. 2015;60(8):2427–35.
CAS
Article
PubMed
Google Scholar
Ham NS, Hwang SW, Oh EH, Kim J, Lee HS, Park SH, Yang DH, Ye BD, Byeon JS, Myung SJ, Yang SK. Influence of sev1ere Vitamin D deficiency on the clinical course of inflammatory bowel disease. Dig Dis Sci. 2021;66(2):587–96. https://doi.org/10.1007/s10620-020-06207-4 (Epub 2020 Mar 26 PMID: 32219610).
CAS
Article
PubMed
Google Scholar
Hizarcioglu-Gulsen H, Kaplan JL, Moran CJ, Israel EJ, Lee H, Winter H. The impact of Vitamin D on response to anti-tumor necrosis factor-α therapy in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2021;72(5):e125–31. https://doi.org/10.1097/MPG.0000000000003064 (PMID: 33847289).
CAS
Article
PubMed
Google Scholar
Yamada A, Komaki Y, Komaki F, Haider H, Micic D, Pekow J, Dalal S, Cohen RD, Cannon L, Umanskiy K, Smith R, Shogan BD, Hurst R, Hyman N, Rubin DT, Sakuraba A. The correlation between Vitamin D levels and the risk of postoperative recurrence in Crohn's disease. Digestion. 2021 Feb 8:1–9. https://doi.org/10.1159/000513589. Epub ahead of print. PMID: 33556932.
Jorgensen SP, Agnholt J, Glerup H, Lyhne S, Villadsen GE, Hvas CL, et al. Clinical trial: vitamin D3 treatment in Crohn’s disease - a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther. 2010;32(3):377–83.
CAS
Article
PubMed
Google Scholar
Raftery T, Martineau AR, Greiller CL, Ghosh S, McNamara D, Bennett K, et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study. United European Gastroenterol J. 2015;3(3):294–302.
CAS
Article
PubMed Central
PubMed
Google Scholar
Bendix M, Dige A, Jørgensen SP, Dahlerup JF, Bibby BM, Deleuran B, Agnholt J. Seven weeks of high-dose Vitamin D treatment reduces the need for infliximab dose-escalation and decreases inflammatory markers in Crohn’s disease during one-year follow-up. Nutrients. 2021;13(4):1083. https://doi.org/10.3390/nu13041083.PMID:33810258;PMCID:PMC8065492.
CAS
Article
PubMed
PubMed Central
Google Scholar
Boudou P, Ibrahim F, Cormier C, Sarfati E, Souberbielle JC. A very high incidence of low 25 hydroxy-vitamin D serum concentration in a French population of patients with primary hyperparathyroidism. J Endocrinol Invest. 2006;29(6):511–5. https://doi.org/10.1007/BF03344140.
CAS
Article
PubMed
Google Scholar
M Moosgaard B, Vestergaard P, Heickendorff L, Melsen F, Christiansen P, Mosekilde L. Vitamin D status, seasonal variations, parathyroid adenoma weight and bone mineral density in primary hyperparathyroidism. Clin Endocrinol (Oxf). 2005;63(5):506–513. https://doi.org/10.1111/j.1365-2265.2005.02371.x.
Wang X, Shapses SA, Al-Hraishawi H. Free and bioavailable 25-hydroxyvitamin D levels in patients with primary hyperparathyroidism. Endocr Pract. 2017;23(1):66–71. https://doi.org/10.4158/EP161434.OR.
Article
PubMed
Google Scholar
Wang X, Shapses SA, Wei S, Sukumar D, Ghosh J. Vitamin D-binding protein levels in female patients with primary hyperparathyroidism. Endocr Pract. 2013;19(4):609–13. https://doi.org/10.4158/EP12371.OR.
Article
PubMed
Google Scholar
Clements MR, Davies M, Hayes ME, et al. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol (Oxf). 1992;37(1):17–27. https://doi.org/10.1111/j.1365-2265.1992.tb02278.x.
CAS
Article
Google Scholar
Henry HL. Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney cells. J Biol Chem. 1979;254(8):2722–9.
CAS
Article
PubMed
Google Scholar
Clements MR, Davies M, Fraser DR, Lumb GA, Mawer EB, Adams PH. Metabolic inactivation of vitamin D is enhanced in primary hyperparathyroidism. Clin Sci (Lond). 1987;73(6):659–64. https://doi.org/10.1042/cs0730659.
CAS
Article
Google Scholar
Wang X, Meng L, Su C, Shapses SA. Low free (but not total) 25-hydroxyvitamin D levels in subjects with normocalcemic hyperparathyroidism. Endocr Pract. 2020;26(2):174–8. https://doi.org/10.4158/EP-2019-0325.
Article
PubMed
Google Scholar
Cormier C, Koumakis E. Bones and primary hyperparathyroidism. Joint Bone Spine. 2021 Jan 20:105129. https://doi.org/10.1016/j.jbspin.2021.105129. Epub ahead of print. PMID: 33484857.
Bouillon R, Antonio L. Nutritional rickets: Historic overview and plan for worldwide eradication. J Steroid Biochem Mol Biol. 2020;198: 105563. https://doi.org/10.1016/j.jsbmb.2019.105563.
CAS
Article
PubMed
Google Scholar
Michigami T. Skeletal mineralization: mechanisms and diseases. Ann Pediatr Endocrinol Metab. 2019;24(4):213–9. https://doi.org/10.6065/apem.2019.24.4.213.
Article
PubMed
PubMed Central
Google Scholar
Sai AJ, Walters RW, Fang X, Gallagher JC. Relationship between vitamin D, parathyroid hormone, and bone health. J Clin Endocrinol Metab. 2011;96(3):E436–46. https://doi.org/10.1210/jc.2010-1886.
CAS
Article
PubMed
Google Scholar
Priemel M, von Domarus C, Klatte TO, et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res. 2010;25(2):305–12. https://doi.org/10.1359/jbmr.090728.
CAS
Article
PubMed
Google Scholar
Song A, Zhao H, Yang Y, et al. Safety and efficacy of common vitamin D supplementation in primary hyperparathyroidism and coexistent vitamin D deficiency and insufficiency: a systematic review and meta-analysis. J Endocrinol Invest. 2021;44(8):1667–77. https://doi.org/10.1007/s40618-020-01473-5.
CAS
Article
PubMed
Google Scholar
Marcocci C, Bollerslev J, Khan AA, Shoback DM. Medical management of primary hyperparathyroidism: proceedings of the fourth international workshop on the management of asymptomatic primary hyperparathyroidism. J Clin Endocrinol Metab. 2014;99(10):3607–18. https://doi.org/10.1210/jc.2014-1417.
CAS
Article
PubMed
Google Scholar
Walker MD, Cong E, Lee JA, et al. Vitamin D in Primary Hyperparathyroidism: Effects on clinical, biochemical, and densitometric presentation. J Clin Endocrinol Metab. 2015;100(9):3443–51. https://doi.org/10.1210/jc.2015-2022.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rolighed L, Rejnmark L, Sikjaer T, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J Clin Endocrinol Metab. 2014;99(3):1072–80. https://doi.org/10.1210/jc.2013-3978.
CAS
Article
PubMed
Google Scholar
Loh HH, Lim LL, Yee A, Loh HS, Vethakkan SR. Effect of vitamin D replacement in primary hyperparathyroidism with concurrent vitamin D deficiency: a systematic review and meta-analysis. Minerva Endocrinol. 2019;44(2):221–31. https://doi.org/10.23736/S0391-1977.17.02584-6.
Article
PubMed
Google Scholar
Walker MD, Bilezikian JP. Vitamin D and primary hyperparathyroidism: more insights into a complex relationship. Endocrine. 2017;55(1):3–5. https://doi.org/10.1007/s12020-016-1169-1.
CAS
Article
PubMed
Google Scholar
Yamashita H, Yamazaki Y, Hasegawa H, et al. Fibroblast growth factor-23 (FGF23) in patients with transient hypoparathyroidism: its important role in serum phosphate regulation. Endocr J. 2007;54(3):465–70. https://doi.org/10.1507/endocrj.k06-156.
CAS
Article
PubMed
Google Scholar
Meyer MB, Benkusky NA, Kaufmann M, et al. Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. J Biol Chem. 2019;294(24):9518–35. https://doi.org/10.1074/jbc.RA119.008760.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mazziotti G, Bilezikian J, Canalis E, Cocchi D, Giustina A. New understanding and treatments for osteoporosis. Endocrine. 2012;41(1):58–69. https://doi.org/10.1007/s12020-011-9570-2 (PMID: 22180055).
CAS
Article
PubMed
Google Scholar
Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16. https://doi.org/10.1056/NEJMra067395 (PMID: 17761594).
CAS
Article
PubMed
Google Scholar
Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation [published correction appears in Osteoporos Int. 2016 Aug;27(8):2643-6]. Osteoporos Int. 2016;27(1):367–376. https://doi.org/10.1007/s00198-015-3386-5.
Compston J, Cooper A, Cooper C, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43. https://doi.org/10.1007/s11657-017-0324-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological management of Osteoporosis in postmenopausal women: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5):1595–622. https://doi.org/10.1210/jc.2019-00221.
Article
PubMed
Google Scholar
Carmel AS, Shieh A, Bang H, Bockman RS. The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥33 ng/ml. Osteoporos Int. 2012;23(10):2479–87. https://doi.org/10.1007/s00198-011-1868-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fuleihan Gel-H, Bouillon R, Clarke B, et al. Serum 25-Hydroxyvitamin D levels: variability, knowledge gaps, and the concept of a desirable range. J Bone Miner Res. 2015;30(7):1119–1133. https://doi.org/10.1002/jbmr.2536.
Moreira CA, Ferreira CEDS, Madeira M, et al. Reference values of 25-hydroxyvitamin D revisited: a position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Society of Clinical Pathology/Laboratory Medicine (SBPC) [published correction appears in Arch Endocrinol Metab. 2020 Oct 8;64(5):636]. Arch Endocrinol Metab. 2020;64(4):462–478. https://doi.org/10.20945/2359-3997000000258.
Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial [published correction appears in JAMA. 2010 Jun 16;303(23):2357]. JAMA. 2010;303(18):1815–1822. https://doi.org/10.1001/jama.2010.594.
Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, et al. Chronic kidney disease-mineral and bone disorders: pathogenesis and management. Calcif Tissue Int. 2021;108(4):410–22. https://doi.org/10.1007/s00223-020-00777-1.
CAS
Article
PubMed
Google Scholar
Ketteler M, Block GA, Evenepoel P, et al. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder: synopsis of the kidney disease: improving global outcomes 2017 clinical practice guideline update. Ann Intern Med. 2018;168(6):422–30. https://doi.org/10.7326/M17-2640.
Article
PubMed
Google Scholar
Holden RM, Mustafa RA, Alexander RT, et al. Canadian society of nephrology commentary on the kidney disease improving global outcomes 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder. Can J Kidney Health Dis. 2020;7:2054358120944271. Published 2020 Aug 4. https://doi.org/10.1177/2054358120944271.
Miclea A, Bagnoud M, Chan A, Hoepner R. A brief review of the effects of Vitamin D on multiple sclerosis. Front Immunol. 2020;11:781. Published 2020 May 6. https://doi.org/10.3389/fimmu.2020.00781.
Martínez-Lapiscina EH, Mahatanan R, Lee CH, Charoenpong P, Hong JP. Associations of serum 25(OH) vitamin D levels with clinical and radiological outcomes in multiple sclerosis, a systematic review and meta-analysis. J Neurol Sci. 2020;411: 116668. https://doi.org/10.1016/j.jns.2020.116668.
CAS
Article
PubMed
Google Scholar
Dörr J, Bäcker-Koduah P, Wernecke KD, et al. High-dose vitamin D supplementation in multiple sclerosis - results from the randomized EVIDIMS (efficacy of vitamin D supplementation in multiple sclerosis) trial. Mult Scler J Exp Transl Clin. 2020;6(1):2055217320903474. Published 2020 Jan 24. https://doi.org/10.1177/2055217320903474.
Feige J, Moser T, Bieler L, Schwenker K, Hauer L, Sellner J. Vitamin D supplementation in multiple sclerosis: a critical analysis of potentials and threats. Nutrients. 2020;12(3):783. Published 2020 Mar 16. https://doi.org/10.3390/nu12030783.
Giustina A. Hypovitaminosis D and the endocrine phenotype of COVID-19. Endocrine. 2021 Apr;72(1):1–11. https://doi.org/10.1007/s12020-021-02671-8. Epub 2021 Mar 18. PMID: 33738708; PMCID: PMC7972333
Pittas AG, Dawson-Hughes B, Sheehan P, et al. Vitamin D Supplementation and Prevention of Type 2 Diabetes. N Engl J Med. 2019;381(6):520–30. https://doi.org/10.1056/NEJMoa1900906.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Tan H, Tang J, et al. Effects of Vitamin D Supplementation on Prevention of Type 2 Diabetes in Patients With Prediabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2020;43(7):1650–8. https://doi.org/10.2337/dc19-1708.
CAS
Article
PubMed
Google Scholar
Pramono A, Jocken JWE, Blaak EE, van Baak MA. The Effect of Vitamin D Supplementation on Insulin Sensitivity: A Systematic Review and Meta-analysis. Diabetes Care. 2020;43(7):1659–69. https://doi.org/10.2337/dc19-2265.
CAS
Article
PubMed
Google Scholar
Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001;358(9292):1500–3. https://doi.org/10.1016/S0140-6736(01)06580-1.
Article
PubMed
Google Scholar
Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208–19. https://doi.org/10.1038/nrendo.2016.153.
CAS
Article
PubMed
Google Scholar
Bizzarri C, Pitocco D, Napoli N, et al. No protective effect of calcitriol on beta-cell function in recent-onset type 1 diabetes: the IMDIAB XIII trial. Diabetes Care. 2010;33(9):1962–3. https://doi.org/10.2337/dc10-0814.
CAS
Article
PubMed
PubMed Central
Google Scholar
Napoli N, Strollo R, Pitocco D, et al. Effect of calcitriol on bone turnover and osteocalcin in recent-onset type 1 diabetes. PLoS ONE. 2013;8(2): e56488. https://doi.org/10.1371/journal.pone.0056488.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tapia G, Mårild K, Dahl SR, et al. Maternal and Newborn Vitamin D-Binding Protein, Vitamin D Levels, Vitamin D Receptor Genotype, and Childhood Type 1 Diabetes. Diabetes Care. 2019;42(4):553–9. https://doi.org/10.2337/dc18-2176.
CAS
Article
PubMed
PubMed Central
Google Scholar
Norris JM, Lee HS, Frederiksen B, et al. Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes. 2018;67(1):146–54. https://doi.org/10.2337/db17-0802.
CAS
Article
PubMed
Google Scholar
Tecilazich F, Formenti AM, Giustina A. Role of vitamin D in diabetic retinopathy: Pathophysiological and clinical aspects [published online ahead of print, 2020 Oct 7]. Rev Endocr Metab Disord. 2020;1–13. https://doi.org/10.1007/s11154-020-09575-4.
Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol. 1980;9(3):227–31. https://doi.org/10.1093/ije/9.3.227.
CAS
Article
PubMed
Google Scholar
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57. https://doi.org/10.1038/nrc3691.
CAS
Article
PubMed
Google Scholar
Egan KM. Commentary: sunlight, vitamin D, and the cancer connection revisited. Int J Epidemiol. 2006;35(2):227–30. https://doi.org/10.1093/ije/dyi263.
Article
PubMed
Google Scholar
Garland CF, Gorham ED. Dose-response of serum 25-hydroxyvitamin D in association with risk of colorectal cancer: A meta-analysis. J Steroid Biochem Mol Biol. 2017;168:1–8. https://doi.org/10.1016/j.jsbmb.2016.12.003.
CAS
Article
PubMed
Google Scholar
Palmer JR, Gerlovin H, Bethea TN, et al. Predicted 25-hydroxyvitamin D in relation to incidence of breast cancer in a large cohort of African American women. Breast Cancer Res. 2016;18(1):86. Published 2016 Aug 12. https://doi.org/10.1186/s13058-016-0745-x.
Xu Y, Shao X, Yao Y, et al. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis. J Cancer Res Clin Oncol. 2014;140(9):1465–77. https://doi.org/10.1007/s00432-014-1706-3.
CAS
Article
PubMed
Google Scholar
Lappe J, Watson P, Travers-Gustafson D, et al. Effect of vitamin D and calcium supplementation on cancer incidence in older women: a randomized clinical trial. JAMA. 2017;317(12):1234–43. https://doi.org/10.1001/jama.2017.2115.
CAS
Article
PubMed
Google Scholar
Scragg R, Khaw KT, Toop L, et al. Monthly High-Dose Vitamin D Supplementation and Cancer Risk: A Post Hoc Analysis of the Vitamin D Assessment Randomized Clinical Trial. JAMA Oncol. 2018;4(11): e182178. https://doi.org/10.1001/jamaoncol.2018.2178.
Article
PubMed
PubMed Central
Google Scholar
Urashima M, Ohdaira H, Akutsu T, et al. Effect of Vitamin D Supplementation on Relapse-Free Survival Among Patients With Digestive Tract Cancers: The AMATERASU Randomized Clinical Trial. JAMA. 2019;321(14):1361–9. https://doi.org/10.1001/jama.2019.2210.
CAS
Article
PubMed
PubMed Central
Google Scholar
Peng C, Heng YJ, Lu D, et al. Prediagnostic 25-Hydroxyvitamin D Concentrations in Relation to Tumor Molecular Alterations and Risk of Breast Cancer Recurrence. Cancer Epidemiol Biomarkers Prev. 2020;29(6):1253–63. https://doi.org/10.1158/1055-9965.EPI-19-1217.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chandler PD, Chen WY, Ajala ON, et al. Effect of Vitamin D3 Supplements on development of advanced cancer: a secondary analysis of the VITAL Randomized Clinical Trial [published correction appears in JAMA Netw Open. 2020 Dec 1;3(12):e2032460]. JAMA Netw Open. 2020;3(11):e2025850. Published 2020 Nov 2. https://doi.org/10.1001/jamanetworkopen.2020.25850.
McDonnell SL, Baggerly C, French CB, et al. Serum 25-Hydroxyvitamin D Concentrations ≥40 ng/ml Are Associated with >65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study [published correction appears in PLoS One. 2018 Jul 16;13(7):e0201078]. PLoS One. 2016;11(4):e0152441. Published 2016 Apr 6. https://doi.org/10.1371/journal.pone.0152441.
Han J, Guo X, Yu X, et al. 25-Hydroxyvitamin D and total cancer incidence and mortality: a meta-analysis of prospective cohort studies. Nutrients. 2019;11(10):2295. Published 2019 Sep 26. https://doi.org/10.3390/nu11102295.
Jat KR. Vitamin D deficiency and lower respiratory tract infections in children: a systematic review and meta-analysis of observational studies. Trop Doct. 2017;47(1):77–84. https://doi.org/10.1177/0049475516644141.
Article
PubMed
Google Scholar
Laviano E, Sanchez Rubio M, González-Nicolás MT, et al. Association between preoperative levels of 25-hydroxyvitamin D and hospital-acquired infections after hepatobiliary surgery: A prospective study in a third-level hospital. PLoS One. 2020;15(3):e0230336. Published 2020 Mar 26. https://doi.org/10.1371/journal.pone.0230336.
Camargo CA Jr, Ganmaa D, Frazier AL, et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130(3):e561–7. https://doi.org/10.1542/peds.2011-3029.
Article
PubMed
Google Scholar
Aglipay M, Birken CS, Parkin PC, et al. Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children. JAMA. 2017;318(3):245–54. https://doi.org/10.1001/jama.2017.8708.
CAS
Article
PubMed
PubMed Central
Google Scholar
Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. Published 2017 Feb 15. https://doi.org/10.1136/bmj.i6583.
Jolliffe DA, Camargo CA Jr, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–92. https://doi.org/10.1016/S2213-8587(21)00051-6.
CAS
Article
PubMed
Google Scholar
Giustina A, Formenti AM (2020) Does hypovitaminosis D play a role in the high impact of COVID infection in Italy? British Medical Journal Available at: https://www.bmj.com/content/368/bmj.m810/rr-36.
Liu N, Sun J, Wang X, Zhang T, Zhao M, Li H. Low vitamin D status is associated with coronavirus disease 2019 outcomes: a systematic review and meta-analysis. Int J Infect Dis. 2021;104:58–64. https://doi.org/10.1016/j.ijid.2020.12.077.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferrari D, Locatelli M, Faraldi M, Lombardi G. Changes in 25-(OH) Vitamin D Levels during the SARS-CoV-2 outbreak: lockdown-related effects and first-to-second wave difference-an observational study from Northern Italy. Biology (Basel). 2021;10(3):237. Published 2021 Mar 19. https://doi.org/10.3390/biology10030237.
Puig-Domingo M, Marazuela M, Giustina A. COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine. 2020;68(1):2–5. https://doi.org/10.1007/s12020-020-02294-5.
Marazuela M, Giustina A, Puig-Domingo M. Endocrine and metabolic aspects of the COVID-19 pandemic [published correction appears in Rev Endocr Metab Disord. 2021 Mar;22(1):145]. Rev Endocr Metab Disord. 2020;21(4):495–507. https://doi.org/10.1007/s11154-020-09569-2.
Pereira M, Dantas Damascena A, Galvão Azevedo LM, de Almeida Oliveira T, da Mota Santana J. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis [published online ahead of print, 2020 Nov 4]. Crit Rev Food Sci Nutr. 2020;1–9. https://doi.org/10.1080/10408398.2020.1841090.
Munshi R, Hussein MH, Toraih EA, et al. Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol. 2021;93(2):733–40. https://doi.org/10.1002/jmv.26360.
CAS
Article
PubMed
Google Scholar
Yisak H, Ewunetei A, Kefale B, et al. Effects of Vitamin D on COVID-19 infection and prognosis: a systematic review. Risk Manag Healthc Policy. 2021;14:31–38. Published 2021 Jan 7. https://doi.org/10.2147/RMHP.S291584.
Ulivieri FM, Banfi G, Camozzi V, et al. Vitamin D in the Covid-19 era: a review with recommendations from a G.I.O.S.E.G. expert panel. Endocrine. 2021;72(3):597–603. https://doi.org/10.1007/s12020-021-02749-3.
Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203: 105751. https://doi.org/10.1016/j.jsbmb.2020.105751.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nogues X, Ovejero D, Pineda-Moncusí M, et al. Calcifediol Treatment and COVID-19-Related Outcomes. J Clin Endocrinol Metab. 2021;106(10):e4017–27. https://doi.org/10.1210/clinem/dgab405.
Article
PubMed
Google Scholar
Murai IH, Fernandes AL, Sales LP, et al. Effect of a single high dose of Vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: a randomized clinical trial. JAMA. 2021;325(11):1053–60. https://doi.org/10.1001/jama.2020.26848.
CAS
Article
PubMed
Google Scholar
di Filippo L, Allora A, Locatelli M, et al. Hypocalcemia in COVID-19 is associated with low vitamin D levels and impaired compensatory PTH response. Endocrine. 2021;74(2):219–25. https://doi.org/10.1007/s12020-021-02882-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
di Filippo L, Formenti AM, Giustina A. Hypocalcemia: the quest for the cause of a major biochemical feature of COVID-19. Endocrine. 2020;70(3):463–4. https://doi.org/10.1007/s12020-020-02525-9.
CAS
Article
PubMed
Google Scholar
Di Filippo L, Formenti AM, Rovere-Querini P, et al. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine. 2020;68(3):475–8. https://doi.org/10.1007/s12020-020-02383-5.
CAS
Article
PubMed
Google Scholar
di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A. Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict disease outcomes. J Clin Endocrinol Metab. 2021;106(2):e602–14. https://doi.org/10.1210/clinem/dgaa738.
Article
PubMed
Google Scholar
di Filippo L, Formenti AM, Doga M, et al. Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine. 2021;71(1):9–13. https://doi.org/10.1007/s12020-020-02541-9.
CAS
Article
PubMed
Google Scholar
di Filippo L, Doga M, Frara S, Giustina A. Hypocalcemia in COVID-19: prevalence, clinical significance and therapeutic implications [published online ahead of print, 2021 Apr 13]. Rev Endocr Metab Disord. 2021;1–10. https://doi.org/10.1007/s11154-021-09655-z.
Martha JW, Wibowo A, Pranata R. Hypocalcemia is associated with severe COVID-19: a systematic review and meta-analysis. Diabetes Metab Syndr. 2021;15(1):337–42. https://doi.org/10.1016/j.dsx.2021.01.003.
Article
PubMed
PubMed Central
Google Scholar
Alemzadeh E, Alemzadeh E, Ziaee M, Abedi A, Salehiniya H. The effect of low serum calcium level on the severity and mortality of Covid patients: A systematic review and meta-analysis [published online ahead of print, 2021 Sep 17]. Immun Inflamm Dis. 2021. https://doi.org/10.1002/iid3.528. https://doi.org/10.1002/iid3.528.
Tramontana F, Napoli N, El-Hajj Fuleihan G, Strollo R. The D-side of COVID-19: musculoskeletal benefits of vitamin D and beyond. Endocrine. 2020;69(2):237–40. https://doi.org/10.1007/s12020-020-02407-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Napoli N, Elderkin AL, Kiel DP, Khosla S. Managing fragility fractures during the COVID-19 pandemic. Nat Rev Endocrinol. 2020;16(9):467–8. https://doi.org/10.1038/s41574-020-0379-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brandi ML, Giustina A. Sexual dimorphism of Coronavirus 19 morbidity and lethality. Trends Endocrinol Metab. 2020 Dec;31(12):918–927. https://doi.org/10.1016/j.tem.2020.09.003. Epub 2020 Sep 24. PMID: 33082024; PMCID: PMC7513816
Cashman KD, Kinsella M, McNulty BA, et al. Dietary vitamin D2–a potentially underestimated contributor to vitamin D nutritional status of adults? Br J Nutr. 2014;112(2):193–202. https://doi.org/10.1017/S0007114514000725.
CAS
Article
PubMed
Google Scholar
Ziegler TE, Kapoor A, Binkley NC, et al. Comparison of vitamin D metabolites in wild and captive baboons. Am J Primatol. 2018;80(12): e22935. https://doi.org/10.1002/ajp.22935.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bouillon R, Verlinden L, Verstuyf A. Is Vitamin D2 really bioequivalent to Vitamin D3? Endocrinology. 2016;157(9):3384–7. https://doi.org/10.1210/en.2016-1528.
CAS
Article
PubMed
Google Scholar
Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–64. https://doi.org/10.3945/ajcn.111.031070.
CAS
Article
PubMed
PubMed Central
Google Scholar
Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline [published correction appears in J Clin Endocrinol Metab. 2011 Dec;96(12):3908]. J Clin Endocrinol Metab. 2011;96(7):1911–1930. https://doi.org/10.1210/jc.2011-0385.
Park EA. The Therapy Of Rickets. JAMA. 1940;115(5):370–9. https://doi.org/10.1001/jama.1940.72810310011009a.
Article
Google Scholar
Binkley N, Gemar D, Engelke J, et al. Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. J Clin Endocrinol Metab. 2011;96(4):981–8. https://doi.org/10.1210/jc.2010-0015.
CAS
Article
PubMed
PubMed Central
Google Scholar
Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr. 2006;84(4):694–7. https://doi.org/10.1093/ajcn/84.4.694.
CAS
Article
PubMed
Google Scholar
Tolan NV, Yoon EJ, Brady AR, Horowitz GL. Price of high-throughput 25-Hydroxyvitamin D immunoassays: frequency of inaccurate results. J Appl Lab Med. 2018;2(6):868–79. https://doi.org/10.1373/jalm.2017.024323.
CAS
Article
PubMed
Google Scholar
Wyness SP, Straseski JA. Performance characteristics of six automated 25-hydroxyvitamin D assays: mind your 3s and 2s. Clin Biochem. 2015;48(16–17):1089–96. https://doi.org/10.1016/j.clinbiochem.2015.08.005.
CAS
Article
PubMed
Google Scholar
Binkley NC, Wiebe DA. It’s time to stop prescribing ergocalciferol. Endocr Pract. 2018;24(12):1099–102. https://doi.org/10.4158/EP-2018-0415.
Article
PubMed
Google Scholar
Camacho PM, Petak SM, Binkley N, et al. American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;26(Suppl 1):1–46. https://doi.org/10.4158/GL-2020-0524SUPPL.
Article
PubMed
Google Scholar
Holick MF, Semmler EJ, Schnoes HK, DeLuca HF. 1 -Hydroxy derivative of vitamin D 3: a highly potent analog of 1,25-dihydroxyvitamin D 3. Science. 1973;180(4082):190–1. https://doi.org/10.1126/science.180.4082.190 (PMID: 4348463).
CAS
Article
PubMed
Google Scholar
Pludowski P, Holick MF, Grant WB, et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol. 2018;175:125–35. https://doi.org/10.1016/j.jsbmb.2017.01.021.
CAS
Article
PubMed
Google Scholar
Cesareo R, Falchetti A, Attanasio R, Tabacco G, Naciu AM, Palermo A. Hypovitaminosis D: is it time to consider the use of calcifediol?. Nutrients. 2019;11(5):1016. Published 2019 May 6. https://doi.org/10.3390/nu11051016.
O’Donnell S, Moher D, Thomas K, Hanley DA, Cranney A. Systematic review of the benefits and harms of calcitriol and alfacalcidol for fractures and falls. J Bone Miner Metab. 2008;26(6):531–42. https://doi.org/10.1007/s00774-008-0868-y.
CAS
Article
PubMed
Google Scholar
Tecilazich F, Formenti AM, Frara S, Giubbini R, Giustina A. Treatment of hypoparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32(6):955–64. https://doi.org/10.1016/j.beem.2018.12.002 (Epub 2018 Dec 6 PMID: 30551988).
CAS
Article
PubMed
Google Scholar
Formenti AM, Tecilazich F, Frara S, Giubbini R, De Luca H, Giustina A. Body mass index predicts resistance to active vitamin D in patients with hypoparathyroidism. Endocrine. 2019;66(3):699–700. https://doi.org/10.1007/s12020-019-02105-6 (Epub 2019 Oct 26 PMID: 31655979).
CAS
Article
PubMed
Google Scholar
Bollerslev J, Rejnmark L, Marcocci C, Shoback DM, Sitges-Serra A, van Biesen W, Dekkers OM; European Society of Endocrinology. European society of endocrinology clinical guideline: treatment of chronic hypoparathyroidism in adults. Eur J Endocrinol. 2015 Aug;173(2):G1–20. https://doi.org/10.1530/EJE-15-0628. PMID: 26160136.
Bilezikian JP. Hypoparathyroidism. J Clin Endocrinol Metab. 2020;105(6):1722–36. https://doi.org/10.1210/clinem/dgaa113.PMID:32322899;PMCID:PMC7176479.
Article
PubMed Central
Google Scholar
Thadhani RI, Rosen S, Ofsthun NJ, et al. Conversion from intravenous Vitamin D analogs to oral calcitriol in patients receiving maintenance hemodialysis. Clin J Am Soc Nephrol. 2020;15(3):384–91. https://doi.org/10.2215/CJN.07960719.
CAS
Article
PubMed
PubMed Central
Google Scholar
Waziri B, Duarte R, Naicker S. Chronic kidney disease-mineral and bone disorder (CKD-MBD): current perspectives. Int J Nephrol Renovasc Dis. 2019;12:263–276. Published 2019 Dec 24. https://doi.org/10.2147/IJNRD.S191156.
Minisola S, Cianferotti L, Biondi P, et al. Correction of vitamin D status by calcidiol: pharmacokinetic profile, safety, and biochemical effects on bone and mineral metabolism of daily and weekly dosage regimens. Osteoporos Int. 2017;28(11):3239–49. https://doi.org/10.1007/s00198-017-4180-3.
CAS
Article
PubMed
Google Scholar
Sosa Henríquez M, Gómez de Tejada Romero MJ. Cholecalciferol or calcifediol in the management of Vitamin D deficiency. Nutrients. 2020;12(6):1617. Published 2020 May 31. https://doi.org/10.3390/nu12061617.
Ish-Shalom S, Segal E, Salganik T, Raz B, Bromberg IL, Vieth R. Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients. J Clin Endocrinol Metab. 2008;93(9):3430–5. https://doi.org/10.1210/jc.2008-0241.
CAS
Article
PubMed
Google Scholar
Takács I, Tóth BE, Szekeres L, Szabó B, Bakos B, Lakatos P. Randomized clinical trial to comparing efficacy of daily, weekly and monthly administration of vitamin D3. Endocrine. 2017;55(1):60–5. https://doi.org/10.1007/s12020-016-1137-9.
CAS
Article
PubMed
Google Scholar
Fassio A, Adami G, Rossini M, et al. Pharmacokinetics of oral cholecalciferol in healthy subjects with vitamin D deficiency: a randomized open-label study. Nutrients. 2020;12(6):1553. Published 2020 May 27. https://doi.org/10.3390/nu12061553.
Romagnoli E, Mascia ML, Cipriani C, et al. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab. 2008;93(8):3015–20. https://doi.org/10.1210/jc.2008-0350.
CAS
Article
PubMed
Google Scholar
Yu SB, Lee Y, Oh A, Yoo HW, Choi JH. Efficacy and safety of parenteral vitamin D therapy in infants and children with vitamin D deficiency caused by intestinal malabsorption. Ann Pediatr Endocrinol Metab. 2020;25(2):112–7. https://doi.org/10.6065/apem.1938142.071.
Article
PubMed
PubMed Central
Google Scholar