Skip to main content

Advertisement

Log in

The PTH-Vitamin D-FGF23 axis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 23 (FGF23) has emerged as an important regulator of phosphate and vitamin D homeostasis. It is important to understand how FGF23 interacts with vitamin D and parathyroid hormone (PTH) in a FGF23-Vitamin D-PTH axis to regulate mineral homeostasis. In this review, we discuss the genomic structure, and transcriptional, translational, and posttranslational regulation of FGF23. We describe its interaction with PTH and vitamin D, disorders of altered FGF23 states, and emerging therapies for diseases of FGF23 based upon these findings. This discussion helps redefine the role of PTH and vitamin D in relation to a complex bone-kidney-parathyroid loop, and points to areas within this complicated field in need of further clarification and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PTH:

Parathyroid hormone

FGF23:

Fibroblast growth factor-23

TIO:

Tumor induced osteomalacia

1,25-D:

1,25 dihydroxyvitamin D3

XLH:

X-linked hypophosphatemic rickets

ADHR:

Autosomal dominant hypophosphatemic rickets

αKl:

α-klotho

CKD:

Chronic kidney disease

FGFR:

FGF receptor

SPC:

Subtilisin-like proprotein convertase

GALNT3:

O-glycosylation through ppGalNAc-T3

NaPi:

Sodium-phosphate co-transporter

P-ERK:

Phosphate epidermal growth factor

EGR-1:

Early growth response gene 1

G-CK:

Golgi casein kinase

FD:

Fibrous dysplasia

VDR:

Vitamin D receptor

HYP:

X-linked hypophosphatemic rickets mice

MEPE:

Matrix extracellular phosphoglycoprotein

ASARM:

Acidic serine aspartate-rich matrix extracellular phosphoglycoprotein (MEPE)-associated motif

PHEX:

Phosphate regulating endopeptidase homolog, X-linked

FN1:

Fibronectin 1

HFTC/HHS:

Hyperphosphatemic familial tumoral calcinosis/hyperostosis syndrome

eGFR:

Estimated glomerular filtration rate

LVH:

Left ventricular hypertrophy

FAM20C:

Kinase family with sequence similarity 20, member C

ENPP-1:

Ectonucleotide pyrophosphatase/phosphodiesterase 1

DMP-1:

Dentin matrix protein-1

OGD:

Osteoglophonic dysplasia

FN1:

Fibronectin 1

FISH:

Fluorescence in situ hybridization

References

  1. Prader A et al. [Rickets following bone tumor]. Helv Paediatr Acta. 1959;14:554–65.

    CAS  PubMed  Google Scholar 

  2. Meyer Jr RA, Meyer MH, Gray RW. Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J Bone Miner Res. 1989;4(4):493–500.

    Article  PubMed  Google Scholar 

  3. White KE et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60(6):2079–86.

    Article  CAS  PubMed  Google Scholar 

  4. White KE et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab. 2001;86(2):497–500.

    Article  CAS  PubMed  Google Scholar 

  5. ADHR C. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. The ADHR Consortium. Nat Genet. 2000;26(3):345–8.

    Article  Google Scholar 

  6. Shimada T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cai Q et al. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med. 1994;330(23):1645–9.

    Article  CAS  PubMed  Google Scholar 

  8. Feng JQ et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lorenz-Depiereux B et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248–50.

    Article  CAS  PubMed  Google Scholar 

  10. Turan S et al. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone. 2010;46(2):402–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Levy-Litan V et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86(2):273–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Saito T et al. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone. 2011;49(4):913–6.

    Article  CAS  PubMed  Google Scholar 

  13. Carpenter TO et al. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381–8.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bhattacharyya N et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res. 2012;27(5):1132–41.

    Article  CAS  PubMed  Google Scholar 

  15. Riminucci M et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112(5):683–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277(2):494–8.

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharyya N et al. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab. 2012;23(12):610–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yamazaki Y et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res. 2008;23(9):1509–18.

    Article  CAS  PubMed  Google Scholar 

  19. Goetz R et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27(9):3417–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol. 2012;27(9):1477–87.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shimada T et al. Targeted ablation of Ffg23 demonstrates an essential physiological role of FGF23 in pohsphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Shimada T et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  23. Weinman EJ et al. Fibroblast growth factor-23-mediated inhibition of renal phosphate transport in mice requires sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and synergizes with parathyroid hormone. J Biol Chem. 2011;286(43):37216–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Baum M et al. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int. 2005;68(3):1148–53.

    Article  CAS  PubMed  Google Scholar 

  25. Farrow EG et al. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol. 2009;20(5):955–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Andrukhova O et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51(3):621–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ben-Dov IZ et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117(12):4003–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Krajisnik T et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  29. Ichikawa S et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117(9):2684–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Brownstein CA et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A. 2008;105(9):3455–60.

  31. Chong WH et al. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18(3):R53–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Smith ER et al. Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab. 2012;97(9):3357–65.

    Article  CAS  PubMed  Google Scholar 

  33. Jonsson KB et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;348(17):1656–63.

    Article  CAS  PubMed  Google Scholar 

  34. Lorenz-Depiereux B et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78(2):193–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nishida Y, et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 2006.

  36. Larsson T et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003;64(6):2272–9.

    Article  CAS  PubMed  Google Scholar 

  37. Burnett SM et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90(3):1519–24.

    Article  CAS  PubMed  Google Scholar 

  39. Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006;91(8):3144–9.

    Article  CAS  PubMed  Google Scholar 

  40. Perwad F et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–64.

    Article  CAS  PubMed  Google Scholar 

  41. Scanni R et al. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 2014;25(12):2730–9.

    Article  CAS  PubMed  Google Scholar 

  42. Quinn SJ et al. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab. 2013;304(3):E310–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lavi-Moshayoff V et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299(4):F882–9.

    Article  CAS  PubMed  Google Scholar 

  44. Lopez I et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 2011;80(5):475–82.

    Article  CAS  PubMed  Google Scholar 

  45. Liu S et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.

    Article  CAS  PubMed  Google Scholar 

  46. Saji F et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol. 2009;111(4):59–66.

    Article  Google Scholar 

  47. Samadfam R et al. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology. 2009;150(11):4835–45.

    Article  CAS  PubMed  Google Scholar 

  48. Burnett-Bowie SA et al. Effects of hPTH(1–34) infusion on circulating serum phosphate, 1,25-dihydroxyvitamin D, and FGF23 levels in healthy men. J Bone Miner Res. 2009;24(10):1681–5.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Gutierrez OM et al. (1–34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7(1):139–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Singh RJ, Kumar R. Fibroblast growth factor 23 concentrations in humoral hypercalcemia of malignancy and hyperparathyroidism. Mayo Clin Proc. 2003;78(7):826–9.

    Article  CAS  PubMed  Google Scholar 

  51. Tebben PJ et al. Fibroblast growth factor 23, parathyroid hormone, and 1alpha,25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin Proc. 2004;79(12):1508–13.

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi K et al. Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol. 2006;154(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kawata T et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol. 2007;18(10):2683–8.

    Article  CAS  PubMed  Google Scholar 

  54. Mosekilde L. Primary hyperparathyroidism and the skeleton. Clin Endocrinol (Oxf). 2008;69(1):1–19.

    Article  CAS  Google Scholar 

  55. Brown WW et al. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 2009;94(1):17–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Collins MT et al. Fibroblast growth factor-23 is regulated by 1alpha,25-dihydroxyvitamin D. J Bone Miner Res. 2005;20(11):1944–50.

    Article  CAS  PubMed  Google Scholar 

  57. Hill LF et al. Treatment of hypoparathyroidism with 1,25-dihydroxycholecalciferol. Clin Endocrinol (Oxf). 1976;5(Suppl):167S–73.

    Article  Google Scholar 

  58. Yu X et al. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7.

    Article  CAS  PubMed  Google Scholar 

  59. Saito H et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ito M, et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K562 cells. Am J Physiol Endocrinol Metab. 2005.

  61. Dubois SG et al. Role of abnormal neutral endopeptidase-like activities in Hyp mouse bone cells in renal phosphate transport. Am J Physiol Cell Physiol. 2002;283(5):C1414–21.

    Article  CAS  PubMed  Google Scholar 

  62. Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012;22(1):61–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Guo R et al. Inhibition of MEPE cleavage by Phex. Biochem Biophys Res Commun. 2002;297(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  64. Benet-Pages A, et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2004.

  65. Tagliabracci VS et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111(15):5520–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Wang X et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet. 2012;8(5), e1002708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Simpson MA et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet. 2007;81(5):906–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. White KE et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet. 2005;76(2):361–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wohrle S et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res. 2013;28(4):899–911.

    Article  PubMed  Google Scholar 

  70. Wohrle S et al. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res. 2011;26(10):2486–97.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang MY et al. Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology. 2012;153(4):1806–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Xiao Z et al. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. PLoS One. 2014;9(8), e104154.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Han X, Xiao Z, Quarles LD. Membrane and integrative nuclear fibroblastic growth factor receptor (FGFR) regulation of FGF-23. J Biol Chem. 2015;290(16):10447–59.

    Article  CAS  PubMed  Google Scholar 

  74. Liu S et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol. 2009;23(9):1505–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Xiao L, Esliger A, Hurley MM. Nuclear fibroblast growth factor 2 (FGF2) isoforms inhibit bone marrow stromal cell mineralization through FGF23/FGFR/MAPK in vitro. J Bone Miner Res. 2013;28(1):35–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Lee JC et al. Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol. 2015;235(4):539–45.

    Article  CAS  PubMed  Google Scholar 

  77. Jacob AL et al. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Beighton P, Cremin BJ, Kozlowski K. Osteoglophonic dwarfism. Pediatr Radiol. 1980;10(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  79. Geller JL et al. Cinacalcet in the management of tumor-induced osteomalacia. J Bone Miner Res. 2007;22(6):931–7.

    Article  CAS  PubMed  Google Scholar 

  80. Alon US et al. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3(3):658–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Aono Y et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009;24(11):1879–88.

    Article  CAS  PubMed  Google Scholar 

  82. Carpenter TO et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124(4):1587–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Shigematsu T et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44(2):250–6.

    Article  CAS  PubMed  Google Scholar 

  84. Gutierrez O et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15.

    Article  CAS  PubMed  Google Scholar 

  85. Gutierrez OM et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Gutierrez OM et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Faul C et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Desjardins L et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int. 2012;23(7):2017–25.

    Article  CAS  PubMed  Google Scholar 

  89. Srivaths PR et al. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011;26(6):945–51.

    Article  PubMed  Google Scholar 

  90. Roos M et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf). 2008;68(4):660–5.

    Article  CAS  Google Scholar 

  91. Inaba M et al. Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos Int. 2006;17(10):1506–13.

    Article  CAS  PubMed  Google Scholar 

  92. Feldman HI et al. The chronic renal insufficiency cohort (CRIC) study: design and methods. J Am Soc Nephrol. 2003;14(7 Suppl 2):S148–53.

    Article  PubMed  Google Scholar 

  93. Isakova T et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Hasegawa H et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 2010;78(10):975–80.

    Article  CAS  PubMed  Google Scholar 

  96. Shalhoub V et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012;122(7):2543–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Division of Intramural Research, National Institute of Dental and Craniofacial Research, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services.

Conflict of Interest

JEB and MTC have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Collins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blau, J.E., Collins, M.T. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord 16, 165–174 (2015). https://doi.org/10.1007/s11154-015-9318-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-015-9318-z

Keywords

Navigation