Skip to main content
Log in

Effect of Component Surface Preparation on Coating Adhesive Strength during Plasma Spraying

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results of studying the effect of component surface preparation on coating adhesive strength with a substrate are presented. A new method of surface preparation for plasma spraying is proposed that makes it possible to reduce worn component restoration specific costs and labor intensity, as well as to improve coating quality. A distinctive feature of the method proposed is the effect on treated surface of a thermal-abrasive jet with simultaneous surface heating that provides good coating adhesive strength with a component surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. A. Khasui and O. Morigaki, Surfacing and Deposition (editors I. S. Stepan and N. G. Shesterkin), [translated from Japanese, V. N. Popov], Mashinotroenie, Moscow (1985).

  2. A. I. Sidorov, Component Restoration by Deposition and Surfacing [in Russian], Mashinotroenie, Moscow (1987).

    Google Scholar 

  3. V. V. Kudinov and G. V. Bobrov, Coating Application by Deposition. Theory, Technology and Equipment [in Russian], Metallurgiya, Moscow (1992).

    Google Scholar 

  4. G. N. Lashchenko, Plasma hardening and Deposition [in Russian], Ékotekhnologiya, Kiev (2003).

    Google Scholar 

  5. N. A. Sosnin, S. A. Ermakov, and P. A. Topolyanskii, Plasma Coatings with a Nanocrystalline and Amorphous Structure [in Russian], Izd. Politekhn. Univ., St. Petersburg (2008).

    Google Scholar 

  6. V. I. kalita and D. I. Komlev, Plasma Coatings with Nanocrystalline and Amorphous Structure [in Russian], Lider M, Moscow (2008).

  7. I. N. Kravchenko, M. A. Glinskii, S. V. Kvartsev, et al., Resource Saving Technology During Repair of Refrabricated Equipment [in Russian], INFRA-M, Moscow 2021. DOI: https://doi.org/10.12737/1083289.

  8. A. F. Puzryakov, I. N. Kravchenko, I. K. Sokolov, et al., Technology for Application of Wear-Resistant Coatings with Increased Strength, [in Russian], Éko-Press, Moscow (2013).

    Google Scholar 

  9. L. Kh. Baldaev, V. N. Borisov, V. A. Vakhalin, et al, Gas-Thermal Deposition, 2nd Ed. [in Russian], Staraya Basmannaya, Moscow (2015).

  10. A. I. Kovtunov, I. S. Nesterenko, and Yu. Yu. Yurikov, “Effect of base metal warm-up temperature on coating strength and adhesion with gas-thermal deposition,” in: Innovative introductions in the field of technical science, coll. sci. work, Évensis, Moscow 2018).

  11. O. A. Sharaya, A. G. Gastukhov, and I. N. Kravchenko, Surface Engineering of Strengthened Components [in Russian], INFRA- M, Moscow (2020). DOI: https://doi.org/10.12737/1031713.

  12. A. E. Provolotskii, Jet-Abrasive Treatment of Machine Components [in Russian], Tekhnika, Kiev (1989).

    Google Scholar 

  13. A. E. Provolotskii, “Mechanization of component finishing with use of jet-abrasive treatment,” Mekhan. Avtomat. Proizvod., No. 5, 7 – 10 (1990).

    Google Scholar 

  14. M. N. Baranov,M. G. Isupov, and G. P. Isupov, “Strength indices for treated material with jet-abrasive treatment,” Vestnik Mashin., No. 5, 62 – 66 (2009).

    Google Scholar 

  15. A. A. Andilakhai and F. V. Novikov, “Theoretical and experimental study of jet-abrasive treatment dynamics,” Vestnik Priazov. Gos. Tekhn., Univ., No. 20, 206 – 212 (2010).

    Google Scholar 

  16. O. V. Zakharov L. V. Khudobin, N. I. Vetkasov, et. al., “Jet-abrasive treatment of large components,” Vestnik Mashin., No. 3, 79 – 81 (2016).

  17. A. A. Andrilakhai, “Theoretical analysis of component jet-abrasive treatment parameters,” Vestn. Nats. Tekhn. Univ. KhPI, No. 1, 15 – 22 (2009).

    Google Scholar 

  18. F. V. Novikov and A. A. Andrilakhai, “Theroetical analysis of forced stress parameters of jet-abrasive treatment,” Nauch. Tr. Donetsk. Nats. Tekhn. Univ. Ser. Mashin. Mashinoved., No. 7 (166) 46 – 53 (2010).

    Google Scholar 

  19. V. S. Shirshov, “Study of the effect of surface treatment parameters for metal structures on coating adhesive strength with s base,” Svaroch. Proizvod., No. 7, 23 – 26 (2012).

    Google Scholar 

  20. F. V. Novikov, A. A. Andilakhai,, and O. S. Klenov, Determination of forced stress parameters for nongferrous metal component machining processes,” Vestn. Priazov. Gos. Tekhn. Univ. Ser. Tekhn. Nauk, No. 26, 174 – 182 (2013).

  21. S. V. Kvartsev, RF Patent 92238, MPK H 01 J 1/02. Plasmatron for plasma deposition. No. 2009123241/22; Claim 06.18.2009; Publ. 03.10.2010, Bull. No. 7.

  22. S. V. Kvartsev, M. N. Erofeev, I. V. Kvartseva, and N. N. Kravchenko, RF Patent 2737909, MPK B24C 1/00. Surface preparation method for wear-resistant coating application, No. 2020121911; Claim 07.02.2020; Publ. 12.04.2020, Bull. No. 34.

  23. S. M. Muneer and M. Nadeera, “Wear characterization and microstructure evaluation of silicon carbide based nanocomposite coating using plasma spraying,” Materials Today : Proceedings, 5(11), Part 3, 23834 – 23843 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.10.175.

  24. A. F. Puzryakov, Theoretical Bases of Plasma Deposition technology [in Russian[, Izd. MGU im N. É. Bauman, Moscow (2008).

  25. I. N. Kravchenko, T. A. Chekha, A. O. Fedorov, and A. F. Slivov, “Features of component surface preparation for deposition of wear-resistant plasma coatings,” Remont. Vosstan. Modern. No. 2, 27 – 32 (2020). DOI: https://doi.org/10.31044/1684-2561-2020-0-2-27-32.

    Article  Google Scholar 

  26. I. N. Kravchenko, A. F. Slivov, V. M. Korneev, and Yu. V. Kataev, “Component surface cleaning during restoration,” Sel. Mekhan., No. 8, 38 – 40 (2019).

    Google Scholar 

  27. M. G. Isupov, “Prediction of metal removal during jet-abrasive treatment,” Izv. Vuz. Mashinostronenie, No. 6, 37 – 46 (2004).

    Google Scholar 

  28. M. G. Isupov, “Calculation of metal removal during jet-abrasive treatment,” Vestn. Donsk. Gos. Tekhn. Univ., 5(1), 84 – 88 (2005).

    Google Scholar 

  29. V. V. Klyuev, F. R. Sosnin, V. N. Filinov, et. al, Engineering Encyclopaedia, 2nd. ed [in Russian] Mshnistroenie, Moscow (2001).

  30. A. I. Stroganov, A. S. Drobyshevskii, and A. B. Gots, “Effect of steel substrate roughness on plasma coating adhesive strength,” Poroshk. Metall., No. 10, 91 – 95 (1982).

    Google Scholar 

  31. V. A. Krasnyi and V. V. Maksarov, “Evaluation of the effect of surface roughness on increase in adhesive strength of a wear-resistant deposited coating,” Metalloobrabotka, No. 5(83), 47 – 51 (2014).

    Google Scholar 

  32. I. N. Kravchenko, S. V. Kartsev, and Yu. A. Kuznetsov, “Use of hot hydrocarbons in a plasma installation for application of wear-resistant coatings,” Refract. Ind. Ceram., 61(4), 399 – 403 (2020). DOI: https://doi.org/10.1007/s11148-020-00492-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Additional information

Translated from Novye Ogneupory, No. 3, pp. 40 – 47, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, I.N., Kartsev, S.V., Velichko, S.A. et al. Effect of Component Surface Preparation on Coating Adhesive Strength during Plasma Spraying. Refract Ind Ceram 62, 168–174 (2021). https://doi.org/10.1007/s11148-021-00578-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00578-5

Keywords

Navigation