Skip to main content
Log in

Use of Hot Hydrocarbons in a Plasma Installation for Application of Wear-Resistant Coatings

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results of comprehensive research on the use of exhaust gases from an internal combustion engine (ICE) as the source of hot hydrocarbons instead of propane-butane or natural gas to reduce oxidative processes are presented. Introduction of hot hydrocarbons in exhaust gases from an ICE is shown to reduce significantly the redox potential of a plasma-torch plasma jet with respect to the sprayed material. An experimental mobile multifunctional plasma installation is developed and enables air-plasma spraying and melting of applied wear-resistant coatings. In this case, the exhaust gases from an ICE are used as the plasma-forming gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. V. S. Loskutov, V. M. Rogozhin, and A. F. Puzryakov, “Plasma spraying as a technological method for treating materials,” Tr. MVTU, No. 237, No. 1, 3 – 27 (1977).

  2. V. V. Kudinov and V. M. Ivanov, Plasma Spraying of Refractory Coatings [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  3. A. Hasui and O. Morigaki, Surfacing and Spraying [translated from Japanese by V. N. Popov], V. S. Stepin and N. G. Shesterkin (eds.), Mashinostroenie, Moscow (1985).

  4. V. V. Kudinov, P. Yu. Pekshev, V. E. Belashchenko, et al., Plasma Deposition of Coatings [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  5. V. V. Kudinov and G. V. Bobrov, Deposition of Coatings by Spraying. Theory, Technology, and Equipment [in Russian], Metallurgiya, Moscow (1992).

    Google Scholar 

  6. A. I. Sidorov and S. V. Kartsev, “Effectiveness of plasma spraying followed by melting,” Mekh. Elektrif. Sel’sk. Khoz., No. 12, 20 – 23 (2000).

    Google Scholar 

  7. A. F. Puzryakov, Theoretical Bases of Plasma Spraying Technology [in Russian], Izd. MGTU im. N. E. Baumana, Moscow (2008).

    Google Scholar 

  8. I. N. Kravchenko, Yu. A. Kuznetsov, A. V. Kolomeichenko, and S. V. Kartsev, “Method for plasma deposition of antifriction wear-resistant coatings on titanium alloys,” Svar. Proizvod., No. 11, 42 – 45 (2019).

    Google Scholar 

  9. I. N. Kravchenko and S. V. Kartsev, Highly Effective Resource- saving Plasma Technologies for Depositing Protective Coatings, Scientific-Technical Collection. No. 10, Izd. BTU pri Spetsstroe Rossii, Balashikha, 87 – 94 (2005).

    Google Scholar 

  10. V. I. Kalita and D. I. Komlev, Plasma Coatings with Nanocrystalline and Amorphous Structures [in Russian], Lider M, Moscow (2008).

    Google Scholar 

  11. N. A. Sosnin, S. A. Ermakov, and P. A. Topolyanskii, Plasma Technologies. Handbook for Engineers [in Russian], Izd. Politekhn. Univ., St. Petersburg (2013).

    Google Scholar 

  12. I. N. Kravchenko, M. N. Erofeev, and M. A. Glinskii, “Promising directions for research and use of plasma technologies in mechanical engineering,” in: Tribology — Mechanical Engineering: Proceedings of the XIIth International Scientific-Technical Conference Dedicated to the 80th Anniversary of IMASH RAN [in Russian], Inst. Komp’yuternykh Issledovanii, Moscow, 253 – 256 (2018).

    Google Scholar 

  13. I. N. Kravchenko, M. A. Glinskii, S. V. Kartsev, et al., Resource- conserving Plasma Technologies for Repairing Reprocessing Equipment [in Russian], INFRA-M, Moscow (2020).

    Google Scholar 

  14. M. F. Zhukov, V. Ya. Smolyakov, and B. A. Uryukov, Electric- arc Gas Heaters (Plasmotrons) [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  15. A. V. Donskoi and V. S. Klubnikin, Electroplasma Installations in Mechanical Engineering [in Russian], Mashinostroenie, Leningrad (1979).

    Google Scholar 

  16. A. S. Koroteev, V. M. Mironov, and Yu. S. Svirchuk, Plasma Torches: Designs, Characteristics, Calculations [in Russian], Mashinostroenie, Moscow (1993).

    Google Scholar 

  17. S. S. Samotugin, I. I. Pirch, and V. A. Mazur, “Optimizing the design of plasma torches for surface hardening of materials,” Svar. Proizvod., No. 12, 32 – 35 (2002).

    Google Scholar 

  18. V. A. Okovityi, A. I. Shevtsov, O. G. Devoino, and V. V. Okovityi, Rep. Belarus Pat. 14,906, IPC C23C4 / 04, “Plasma torch for coating deposition,” Oct. 30, 2011.

  19. Yu. S. Bogdanov, “Arc plasma torch for deposition and its potential industrial use,” Vestn. Polots. Gos. Univ., Ser. B: Prikl. Nauki, No. 2, 155 – 158 (2010).

  20. S. S. Samotugin and V. A. Gagarin, “Principles for improving plasmotron construction for surface hardening of machine slideways,” Vestn. Priazov. Gos. Tekh. Univ., No. 26, 168 – 174 (2013).

    Google Scholar 

  21. S. V. Anakhov, Yu. A. Pykin, and A. V. Matushkin, “Methods for calculating and designing plasmotrons for metal cutting,” Svar. Proizvod., No. 4, 22 – 28 (2019).

    Google Scholar 

  22. S. V. Kartsev, I. N. Kravchenko, and V. Yu. Gladkov, “Mobile plasma installation for deposition of wear-resistant coatings,” in: Technologies for Repair, Restoration, Strengthening, and Renewal of Machines, Mechanisms, Equipment, and Metal Constructions [in Russian], SPBPU, St. Petersburg, 215 – 220 (2004).

    Google Scholar 

  23. I. N. Kravchenko, S. V. Kartsev, and V. Yu. Gladkov, “Mobile plasma installation,” ZhKKh Stroitelstvo, No. 3, 58 (2005).

    Google Scholar 

  24. S. V. Kartsev, I. N. Kravchenko, and A. Yu. Gurtsiev, RU Pat. 66,341, IPC C23C4/00, “Installation for plasma spraying,” Sept. 10, 2007; Appl. No. 2007113494/22; Apr. 11, 2007; Byull. No. 25.

  25. S. V. Kartsev, RU Pat. 92,238, IPC H01J1/02, “Plasmotron for plasma melting,” Mar. 10, 2010; Appl. No. 2009123241/22, Jun. 18, 2009; Byull., No. 7.

  26. S. V. Kartsev and V. N. Varlamov, “Composition of exhaust gases from an internal combustion engine,” in: Collection of Scientific Works. No. 14, Izd. VTU pri Spetsstroe Rossii, Balashikha, 142 – 145 (2007).

    Google Scholar 

  27. S. V. Kartsev, I. N. Kravchenko, and V. N. Varlamov, “ICE as a source of hot hydrocarbons for plasma installations for hardening and restoring machine parts,” Remont Vosstanov. Moderniz., No. 1, 11 – 13 (2008).

    Google Scholar 

  28. V. M. Amosov, B. A. Karelin, and V. V. Kubyshkin, Electrode Materials Based on Refractory Alloys [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  29. L. M. Yakimenko, Electrode Materials in Applied Electrochemistry [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  30. B. S. Gavryushenko and A. V. Pustogarov, “Study of plasmotron electrodes,” in: Electrode Processes and Erosion: Collection [in Russian], Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 85 – 122 (1977).

    Google Scholar 

  31. M. F. Zhukov, I. M. Zasypkin, A. N. Timoshevskii, et al., Electric-arc Thermal Plasma Generators [in Russian], Nauka, Sib. Otd. Ross. Akad. Nauk, Novosibirsk (1999).

    Google Scholar 

  32. S. V. Kartsev, “Operational characteristics of plasmotron electrodes of a plasma installation,” Remont Vosstanov. Moderniz., No. 7, 29 – 31 (2008).

    Google Scholar 

  33. V. E. Kuznetsov, A. A. Kiselev, R. V. Ovchinnikov, and Yu. D. Dudnik, “Electrodes of one-phase alternating current plasmotrons and materials for their fabrication,” Nauchno-Tekh. Vedomosti SPbGPU. Fiz.-Mat. Nauki, No. 2 (146), 100 – 104 (2012).

    Google Scholar 

  34. M. F. Zhukov, A. S. Anypakov, and G.-N. B. Dandaron, Electrode Processes and Erosion of Plasmotron Electrodes: Collection [in Russian], Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977).

    Google Scholar 

  35. A. D. Rychkov and V. V. Salomatov, “Mathematical modeling of electrode erosion processes in electric-arc generators of low-temperature plasma,” Izv. Tomsk. Politekh. Univ., 305(2), 61 – 66 (2002).

    Google Scholar 

  36. D. I. Subbotin, V. E. Kuznetsov, A. I. Litvyakova, et al., “Study of alternating current plasmotron copper electrode erosion products,” Zh. Tekh Fiz., 87(11), 1637 – 1640 (2017). DOI: https://doi.org/10.21883/JTF.2017.11.45122.2064.

  37. V. E. Kuznetsov, A. A. Safronov, V. N. Shiryaev, et al., “Investigation of the parameters of electrode erosion in direct and alternating current plasma torches,” Prikl. Fiz., No. 3, 24 – 30 (2019).

  38. G. K. Klimenko and A. A. Lyapin, “Constructions of electric arc plasmotrons [electronic resource], Izd. MGTU im. N. E. Baumana, Moscow (2011).

    Google Scholar 

  39. V. L. Dzyuba, K. A. Korsunov, and V. S. Gavrysh, “Improved operating effectiveness of a plasmotron for spraying,” in: Modern Technologies, Materials, Machines, and Equipment [in Russian], MGTU, Mogilev, pp. 48, 49 (2002).

    Google Scholar 

  40. S. E. Vinogradov, V. V. Rybin, F. G. Rutberg, et al., “Investigation of wear mechanisms of plasmotron electrodes,” Vopr. Materialoved., No. 2, 52 – 59 (2002).

  41. V. E. Kuznetsov, R. V. Ovchinnikov, V. A. Spodobin, et al., “Investigation of method of rod electrode lifetime increase and time of continuous operation of high-voltage electric-arc alternating current plasma torches with power from 5 to 50 kW,” Izv. Vyssh. Uchebn. Zaved., Fiz., 50(9 – 2), 206 – 209 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Additional information

Translated from Novye Ogneupory, No. 7, pp. 51 – 56, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, I.N., Kartsev, S.V. & Kuznetsov, Y.A. Use of Hot Hydrocarbons in a Plasma Installation for Application of Wear-Resistant Coatings. Refract Ind Ceram 61, 399–403 (2020). https://doi.org/10.1007/s11148-020-00492-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00492-2

Keywords

Navigation