Skip to main content
Log in

The immobilization mechanisms of Pb in borates during low-temperature vitrification process of municipal solid waste incineration (MSWI) fly ash

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

B2O3 was used as a fluxing agent can reduce the melting temperature of municipal solid waste incineration (MSWI) fly ash which related to the formation of the minerals Ca3(BO3)2, Ca2B2O5 and CaB2O4 during vitrification process. However, the relationship between immobilization of heavy metals and borates transformation during melting process remains unclear. In this study, the immobilization of heavy metal Pb inside Ca3(BO3)2, Ca2B2O5 and CaB2O4 based on density functional theory (DFT) were comparatively studied in this paper. The results showed that the defect formation energies for substitutional doping model are higher than interstitial model which is the more favorable the immobilization model for Pb. Pb cause a volume expansion in all borates. In the substitution doping model, Pb can replace Ca to balance the electronegativity of O atom and form chemical bonds with the surrounding O atoms, and the covalency of Pb–O is stronger than that of Ca–O. In addition, the order of covalency between Pb and surrounding O atoms is as follows: Ca3(BO3)2 > Ca2B2O5 > CaB2O4. In the interstitial doping model, bonds of O–Pb and B-Pb exhibited negative population values, revealing that filling of electrons into the antibonding states was the major orbital contribution. In addition, B 2s and 2p orbital and Pb 6p orbital form hybridization near the Fermi level in the CaB2O4 (I) doping model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information file.

References

  1. Tian Z, Tian H, Zhang B (2015) The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Environ Pollut Control 98:333–41. https://doi.org/10.15985/j.cnki.1001-3865.2016.09.015

    Article  CAS  Google Scholar 

  2. China M O E P O T P S R O. Hazardous Waste List (2016) [M]//CHINA M O E P O T P S R O. 2016.

  3. Bingham PA, Hand RJ (2006) Vitrification of toxic wastes: a brief review. Adv Appl Ceram 105(1):21–31. https://doi.org/10.1179/174367606X81687

    Article  CAS  Google Scholar 

  4. Wu S, Xu Y, Sun J et al (2015) Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash. Fuel 158:764–769. https://doi.org/10.1016/j.fuel.2015.06.003

    Article  CAS  Google Scholar 

  5. Ojovan MI, Lee WE, Kalmykov SN (2019) Chapter 19 - immobilisation of radioactive wastes in glass [M]. An introduction to nuclear waste immobilisation, 3rd edn. Elsevier, Amsterdam, pp 319–68

    Chapter  Google Scholar 

  6. Li RD, Nie YF, Wang L et al (2004) Migration characteristics experiment of heavy metal in the vitrification course of fly ash from municipal solid waste incineration. China Environ Sci 24:480–483

    Google Scholar 

  7. Yang G, Ren Q, Xu J et al (2021) Co-melting properties and mineral transformation behavior of mixtures by MSWI fly ash and coal ash. J Energy Inst 96:148–157. https://doi.org/10.1016/j.joei.2021.03.008

    Article  CAS  Google Scholar 

  8. Wang X, Jin B, Xu B et al (2017) Melting characteristics during the vitrification of MSW incinerator fly ash by swirling melting treatment. J Mater Cycles Waste 19(1):483–495. https://doi.org/10.1007/s10163-015-0449-9

    Article  Google Scholar 

  9. Yuan Z, Cai G, Gao L et al (2023) The physical encapsulation and chemical fixation of Zn during thermal treatment process of municipal solid waste incineration (MSWI) fly ash. Waste Manage 166:203–210. https://doi.org/10.1016/j.wasman.2023.05.007

    Article  CAS  Google Scholar 

  10. Wang SJ, He PJ, Shao LM et al (2016) Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment. Chemosphere 161:242–250

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Huang Y, Pan Z et al (2015) Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations. J Hazard Mater 295:43–54

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Huang Y, Zhong Z et al (2016) Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations. Fuel 166:333–339

    Article  CAS  Google Scholar 

  13. Wang X, Huang Y, Zhong Z et al (2014) Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes. Fuel Process Technol 119:228–235. https://doi.org/10.1016/j.fuproc.2013.11.012

    Article  CAS  Google Scholar 

  14. Jakob A, Stucki S, Struis RPWJ (1996) Complete heavy metal removal from fly ash by heat treatment: influences of chlorides on evaporation rates. Environ Sci Technol 30(11):3275–3283. https://doi.org/10.1021/es960059z

    Article  CAS  Google Scholar 

  15. Hu HY, Liu H, Zhang Q et al (2016) Sintering characteristics of CaO-rich municipal solid waste incineration fly ash through the addition of Si/Al-rich ash residues. J Mater Cycles Waste 18(2):340–347. https://doi.org/10.1007/s10163-014-0341-z

    Article  CAS  Google Scholar 

  16. Hu H, Liu H, Shen W et al (2013) Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Chemosphere 93(4):590–596. https://doi.org/10.1016/j.chemosphere.2013.05.077

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Luo W, Cao H et al (2020) Understanding the immobilization mechanisms of hazardous heavy metal ions in the cage of sodalite at molecular level: a DFT study. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110409

    Article  Google Scholar 

  18. Tao Y, Li N, Zhang W et al (2019) Understanding the zinc incorporation into silicate clinker during waste co-disposal of cement kiln: a density functional theory study. J Clean Prod 232:329–336. https://doi.org/10.1016/j.jclepro.2019.05.078

    Article  CAS  Google Scholar 

  19. Tao Y, Zhang W, Li N et al (2018) Fundamental principles that govern the copper doping behavior in complex clinker system. J Am Ceram Soc 101(6):2527–2536. https://doi.org/10.1111/jace.15393

    Article  CAS  Google Scholar 

  20. Tao Y, Zhang W, Shang D et al (2018) Comprehending the occupying preference of manganese substitution in crystalline cement clinker phases: a theoretical study. Cem Concr Res 109:19–29. https://doi.org/10.1016/j.cemconres.2018.04.003

    Article  CAS  Google Scholar 

  21. Wang F-Z, Shang D-C, Wang M-G et al (2016) Incorporation and substitution mechanism of cadmium in cement clinker. J Clean Production 112:2292–9. https://doi.org/10.1016/j.jclepro.2015.09.127

    Article  CAS  Google Scholar 

  22. Sobolev IA, Dmitriev SA, Lifanov FA et al (2005) Vitrification processes for low, intermediate radioactive and mixed wastes. Glass Technol 46(1):28–35

    CAS  Google Scholar 

  23. Karlina OK, Varlakova GA, Ozhovan MI et al (2001) Conditioning of radioactive ash residue in a wave of solid-phase exothermal reactions. At Energ 90:43–48. https://doi.org/10.1023/A:1011387822893

    Article  CAS  Google Scholar 

  24. Karlina OK, Varlackova GA, Ojovan MI et al (2000) Ash and soil conditioning using exothermic metallic compositions. MRS Online Proc Libr 663:65. https://doi.org/10.1557/PROC-663-65

    Article  Google Scholar 

  25. Ojovan MI, Sergey VY (2023) Glass, ceramic, and glass-crystalline matrices for HLW immobilisation. Open Ceramics 14:100355. https://doi.org/10.1016/j.oceram.2023.100355

    Article  CAS  Google Scholar 

  26. Dingwell DB, Knoche R, Webb SL et al (1992) The effect of B2O3 on the viscosity of haplogranitic liquids. Am Miner 77(5):457–461

    CAS  Google Scholar 

  27. Gao J, Dong C, Zhao Y et al (2020) Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent. Waste Manag 102:932–938. https://doi.org/10.1016/j.wasman.2019.12.012

    Article  CAS  PubMed  Google Scholar 

  28. Colombo P, Brusatin G, Bernardo E et al (2003) Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci 3(7):225–239. https://doi.org/10.1016/j.cossms.2003.08.002

    Article  CAS  Google Scholar 

  29. Park JS, Taniguchi S, Park YJ (2009) Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 74(2):320–324. https://doi.org/10.1016/j.chemosphere.2008.08.044

    Article  CAS  PubMed  Google Scholar 

  30. Dimech C, Cheeseman CR, Cook S et al (2008) Production of sintered materials from air pollution control residues from waste incineration. J Mater Sci 43(12):4143–4151. https://doi.org/10.1007/s10853-007-2166-9

    Article  CAS  Google Scholar 

  31. Varshneya AK, Mauro JC (2019) Fundamentals of inorganic glasses, 3rd edn. Elsevier, Amsterdam. https://doi.org/10.1016/C2017-0-04281-7

    Book  Google Scholar 

  32. Ojovan MI (2021) The modified random network (MRN) model within the configuron percolation theory (CPT) of glass transition. Ceramics 4(2):121–134. https://doi.org/10.3390/ceramics4020011

    Article  CAS  Google Scholar 

  33. Gao J, Dong C, Zhao Y et al (2021) Effect of B2O3 on the melting characteristics of model municipal solid waste incineration (MSWI) fly ash. Fuel 283:119278. https://doi.org/10.1016/j.fuel.2020.119278

    Article  CAS  Google Scholar 

  34. Vegas A, Cano FH, Garcia-Blanco S (1975) The crystal structure of calcium orthoborate: a redetermination. Acta Crystallogr Sect B Struct Crystallogr Crystal Chem 31(5):1416–9. https://doi.org/10.1107/s0567740875005316

    Article  Google Scholar 

  35. Zachariasen WH (1931) The crystal lattice of calcium metaborate, CaB2O4. Proc Natl Acad Sci 17(11):617–619. https://doi.org/10.1073/pnas.17.11.617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kusachi I, Kobayashi S, Takechi Y et al (2013) Shimazakiite-4 M and shimazakiite-4 O, Ca2B2O5, two polytypes of a new mineral from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine. https://doi.org/10.1180/minmag.2013.077.1.09

    Article  Google Scholar 

  37. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  38. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  39. Liu JY, Huang L, Sun S et al (2016) Thermodynamic equilibrium calculations on Cd transformation during sewage sludge incineration. Water Environ Res 88(6):548–556

    Article  CAS  PubMed  Google Scholar 

  40. Wang KS, Chiang KY, Tsai CC et al (2001) The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environ Int 26(4):257–263

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grant number 51776070) and the Fundamental Research Funds for the Central Universities (grant numbers 2019MS032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Gao.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wu, L. The immobilization mechanisms of Pb in borates during low-temperature vitrification process of municipal solid waste incineration (MSWI) fly ash. Reac Kinet Mech Cat 137, 1323–1335 (2024). https://doi.org/10.1007/s11144-024-02580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02580-7

Keywords

Navigation