Skip to main content

Advertisement

Log in

Production of sintered materials from air pollution control residues from waste incineration

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Air pollution control residues from waste incineration have been washed to remove excess chloride and other soluble salts and blended with combinations of soda lime glass and waste electrostatic precipitator dust containing boric oxide from the fibre-glass industry. Homogenous fine powder mixes have been pressed and sintered at temperatures between 900 and 1000 °C. The physical properties and microstuctural characteristics of the glass–ceramics formed have been assessed. The results show that it is possible to produce a dense glass–ceramic material containing wollastonite and gehlenite crystalline phases with a hardness of 4.5 GPa. The high density and hardness means that the glass–ceramic may have a potential use in high value construction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Environmental Services Association (2005) Draft APC residue case study, DEFRA, https://doi.org/www.defra.gov.uk/environment/waste/hazforum/pdf/hwf-3-5iv.pdf, as on March 2005

  2. Abanades S, Flamant G, Gagnepain B, Gauthier D (2002) Waste Manage Res 20(1):55

    Article  CAS  Google Scholar 

  3. Lee PH, Nasserzadeh V, Swithenbank J, Laming JV, Goodfellow J, Mcleod C, Argent BB, Lawrence D, Garrod N (1999) Process Saf Environ Protect 77(B4):212

    Article  CAS  Google Scholar 

  4. He P-J, Zhang H, Zhang C-G, Lee D-J (2004) J Hazard Mater B116:229

    Article  Google Scholar 

  5. European Waste Catalogue (2000) In: 2000/532/EC

  6. Geysen D, Vandecasteele C, Jaspers M, Wauters G (2004) J Hazard Mater 107(3):131

    Article  CAS  Google Scholar 

  7. Alba N, Vazquez E, Gasso S, Baldasano JM (2001) Waste Manage 21(4):313

    Article  CAS  Google Scholar 

  8. Todorovic J, Ecke H, Lagerkvist A (2003) Waste Manage 23(7):621

    Article  CAS  Google Scholar 

  9. Barna R, Rethy Z, Imyim A, Perrodin Y, Moszkowicz P, Tiruta-Barna L (2000) Waste Manage 20(8):741

    Article  CAS  Google Scholar 

  10. Rouchotas E (2001) MSc thesis, Department of Civil and Environmental Engineering, Imperial College London

  11. Wang KS, Chiang KY, Lin KL, Sun CJ (2001) Hydrometallurgy 62(2):73

    Article  CAS  Google Scholar 

  12. Chimenos JM, Fernandes AI, Cervantes A, Miralles L, Fernandes MA, Espiell F (2005) Waste Manage 25(7):686

    Article  CAS  Google Scholar 

  13. Abbas Z, Moghaddam AP, Steenari BM (2003) Waste Manage 23(4):291

    Article  CAS  Google Scholar 

  14. Boccaccini AR, Wu JP, Rawlings RD (2006) J Mater Sci 41(3):733. doi:https://doi.org/10.1007/s10853-006-6554-3

    Article  Google Scholar 

  15. Colombo P, Brusatin G, Bernardo E, Scarinci G (2003) Curr Opin Solid State Mat Sci 7(3):225

    Article  CAS  Google Scholar 

  16. Boccaccini AR, Bucker M, Bossert J, Marszalek K (1997) Waste Manage 17(1):39

    Article  CAS  Google Scholar 

  17. Barbieri L, Lancellotti I, Manfredini T, Queralt I, Rincon JM, Romero M (1999) Fuel 78(2):271

    Article  CAS  Google Scholar 

  18. Olgun A, Erdogan Y, Ayhan Y, Zeybek B (2005) Ceram Int 31:153

    Article  CAS  Google Scholar 

  19. Shao H, Liang K, Peng F, Zhou F, Hu A (2005) Minerals Eng 18(6):635

    Article  CAS  Google Scholar 

  20. Catarino L, Sousa J, Martins IM, Vieira MT, Oliveira MM (2003) J Mater Process Technol 143:843

    Article  Google Scholar 

  21. Pisciella P, Crisucci S, Karamanov A, Pelino M (2001) Waste Manage 21:1

    Article  CAS  Google Scholar 

  22. Rozenstrauha I, Wu JP, Boccaccini AR (2005) Glass Technol 46(3):248

    CAS  Google Scholar 

  23. Yun YH, Yoon CH, Kim YH, Kim CK, Kim SB, Kwon JT, Kang BA, Hwang KS (2002) Ceram Int 28(5):503

    Article  CAS  Google Scholar 

  24. Barbieri L, Corradi A, Lancellotti I, Pellacani GC, Boccaccini AR (2003) Glass Technol 44(5):184

    CAS  Google Scholar 

  25. Boccaccini AR, Schawohl J, Hern H, Schunck B, Rincon JM, Romero M (2000) Glass Technol 41(3):99

    CAS  Google Scholar 

  26. Boccaccini AR, Kopf M, Stumpfe W (1995) Ceram Int 21(4):231

    Article  CAS  Google Scholar 

  27. Romero M, Rincon JM, Rawlings RD, Boccaccini AR (2001) Mater Res Bull 36(1–2):383

    Article  CAS  Google Scholar 

  28. Rincon JM, Romero M, Boccaccini AR (1999) J Mater Sci 34(18):4413. doi:https://doi.org/10.1023/A:1004620818001

    Article  CAS  Google Scholar 

  29. Hollander HI, Plumley AL, Decesare RS (1996) J Hazard Mater 47(1–3):369

    Article  CAS  Google Scholar 

  30. Kim JM, Kim HS (2004) J European Ceram Soc 24:2373

    Article  CAS  Google Scholar 

  31. Wexell D, Vitrification of ash from waste-to-energy incinerators, Part II. Cold crown melting and parameters for scale-up, Pollution Prevention Resource Center Corning Inc., https://doi.org/www.pprc.org/pprc/rpd/statefnd/nyschwm/vitrific.html, as on 05/08/2005,

  32. Cheeseman CR, Monteiro Da Rocha S, Sollars C, Bethanis S, Boccaccini AR (2003) Waste Manage 23(10):907

    Article  CAS  Google Scholar 

  33. Rawlings RD, Boccaccini AR (2004) Glass Technol 45(2):108

    CAS  Google Scholar 

  34. Borax Consolidated Limited (1965) In: Glasses, 3rd ed., London, Borax Consolidated London, p 83

  35. Lundtorp K, Jensen DL, Sorensen MA, Christensen TH, Mogensen EPB (2002) Waste Manage Res 20(1):69

    Article  CAS  Google Scholar 

  36. Cheeseman CR, Sollars CJ, Mcentee S (2003) Resour Conserv Recycl 40(1):13

    Article  Google Scholar 

  37. Tsai C-C, Wang K-S, Chiou I-J (2006) J Hazard Mater 134(1–3):87

    Article  CAS  Google Scholar 

  38. Romero M, Rawlings RD, Rincon JM (1999) J Eur Ceram Soc 19(12):2049

    Article  CAS  Google Scholar 

  39. Esposito L, Tucci A, Naldi D (2005) J Eur Ceram Soc 25(9):1487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was completed with financial support from EPSRC (UK) and Rio Tinto Minerals/Borax Europe Ltd through an Industrial Case Award from the Resource Efficiency Knowledge Transfer Network (KTN), formerly the Mini-Waste Faraday Partnership. The experimental assistance of staff and colleagues at Imperial College London and Rio Tinto Minerals (Guildford, UK) is greatly appreciated. Mr Peter Lewis is acknowledged for the provision of APC residue samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimech, C., Cheeseman, C.R., Cook, S. et al. Production of sintered materials from air pollution control residues from waste incineration. J Mater Sci 43, 4143–4151 (2008). https://doi.org/10.1007/s10853-007-2166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2166-9

Keywords

Navigation