Skip to main content
Log in

New catalysts based on carboxylate Sn(IV) complexes used in the oxidation reaction of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Seven carboxylate Sn(IV) complexes C1–C7 were synthesized by condensation between piperic acid with tri-phenylstannanol C1, piperic acidwith di-butylstannanone C2, phenylthioacetic acid with di-butylstannanone C3, 1,1′-(propane-1,3-diyl)-bis-(5-methyl-1H-pyrazole-3-carboxylic acid) with tri-phenylstannanol C4, 1,1′-(ox-ybis(ethane-2,1- di-yl))bis(5-methyl-1H-pyrazole-3-carboxylic acid) with tri-phenylstannanol C5, 1,1′-(propane-1,3-diyl)-bis-(5-methyl-1H -pyrazole-3-carboxylic acid) with di-butylstannanone C6 and 1,1′-(2-hydroxypropane-1,3-di-yl)bis(5-methyl-1H-pyrazole-3-carboxylic acid) with di-butylstannanone C7 these complexes characterized (by 13C NMR, 1H NMR and IR). Then the elaborated catalytic properties of these complexes were evaluated to catalyze the oxidation reaction of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone. All the complexes showed good catalytic activity towards the oxidation reaction. Notably, complex C3 emerges as a standout performer, displaying remarkable catalytic activity in the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone. With a reaction rate of 14.45 μmol L−1 min−1 and an astonishing turnover (T) value of 21671.05 cycles per minute, C3 signifies a promising catalyst for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pellerito L, Nagy L (2002) Organotin (IV) n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224(1–2):111–150. https://doi.org/10.1016/S0010-8545(01)00399-X

    Article  CAS  Google Scholar 

  2. Poller RC (1970) The chemistry of organotin compounds. Logos Press, London

    Google Scholar 

  3. Petrosyan VS (1977) NMR spectra and structures of organotin compounds. Prog Nucl Magn Reson Spectrosc 11(2):115–148. https://doi.org/10.1016/0079-6565(77)80005-8

    Article  Google Scholar 

  4. Neumann WP (1970) The organic chemistry of tin. Interscience, London

    Google Scholar 

  5. Harrison PG (1989) Chemistry of tin. Springer, New York

    Google Scholar 

  6. Otera J, Dan-oh N, Nozaki H (1993) Unique template effects of distannoxane catalysts in transesterification of diol esters. Tetrahedron 49(15):3065–3074. https://doi.org/10.1016/S0040-4020(01)89888-4

    Article  CAS  Google Scholar 

  7. Piver WT (1973) Organotin compounds: industrial applications and biological investigation. Environ Health Perspect 4:61–79. https://doi.org/10.1289/ehp.730461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zuckerman JJ, Reisdorf RP, Ellis HV III, Wilkinson RR (1978) Organotins in biology and the environment, organometals and organometalloids. Chapter 24:388–424. https://doi.org/10.1021/bk-1978-0082.ch024

    Article  CAS  Google Scholar 

  9. Hadjikakou SK, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253(1–2):235–249. https://doi.org/10.1016/j.ccr.2007.12.026

    Article  CAS  Google Scholar 

  10. Ellahioui Y, Prashar S, Gomez-Ruiz S (2017) Anticancer applications and recent investigations of metallodrugs based on gallium, tin and titanium. Inorganics 5(1):4. https://doi.org/10.3390/inorganics5010004

    Article  CAS  Google Scholar 

  11. Alderden RA, Hall MD, Hambley TW (2006) The discovery and development of cisplatin. J Chem Educ 83(5):728–734. https://doi.org/10.1021/ed083p728

    Article  CAS  Google Scholar 

  12. Ho YP, Au-Yeung SC, To KK (2003) Platinum-based anticancer agents: Innovative design strategies and biological perspectives. Med Res Rev 23(5):633–655. https://doi.org/10.1002/med.10038

    Article  PubMed  CAS  Google Scholar 

  13. Sirajuddin M, Ali S (2016) Organotin (IV) carboxylates as promising potential drug candidates in the field of cancer chemotherapy. Curr Pharm Des 22(44):6665–6681. https://doi.org/10.2174/1381612822666160906143249

    Article  PubMed  CAS  Google Scholar 

  14. Banti CN, Hadjikakou SK, Sismanoglu T, Hadjiliadis N (2019) Anti-proliferative and antitumor activity of organotin (IV) compounds. An overview of the last decade and future perspectives. J Inorg Biochem 194:114–152. https://doi.org/10.1016/j.jinorgbio.2019.02.003

    Article  PubMed  CAS  Google Scholar 

  15. Ovejero-Paredes K, Díaz-García D, García-Almodóvar V, Lozano Chamizo L, Marciello M, Díaz-Sánchez M, Filice M (2020) Multifunctional silica-based nanoparticles with controlled release of organotin metallodrug for targeted theranosis of breast cancer. Cancers 12(1):187. https://doi.org/10.3390/cancers12010187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Anasamy T, Chee CF, Kiew LV, Chung LY (2020) In vivo antitumour properties of tribenzyltin carboxylates in a 4T1 murine metastatic mammary tumour model: enhanced efficacy by PLGA nanoparticles. Eur J Pharm Sci 142:105140. https://doi.org/10.1016/j.ejps.2019.105140

    Article  PubMed  CAS  Google Scholar 

  17. Barbieri R, Pellerito L, Ruisi G, Lo Giudice MT, Huber F, Atassi G (1982) The antitumour activity of diorganotin(IV) complexes with adenine and glycylglycine. Inorg Chim Acta 66(3):L39–L40. https://doi.org/10.1016/S0020-1693(00)85768-0

    Article  CAS  Google Scholar 

  18. Nath M, Yadav R, Eng G, Musingarimi P (1999) Characteristic spectral studies and in vitro antimicrobial and in vivo multi-infection antifungal activities in mice of new organotin (IV) derivatives of heterocyclic amino acids. Appl Organomet Chem 13(1):29–37. https://doi.org/10.1002/(SICI)1099-0739(199901)13:1%3c29::AID-AOC809%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  19. Huber F, Roge G, Carl L, Atassi G, Spreafico F, Filippeschi S, Di Bianca F (1985) Studies on the anti-tumour activity of di-and tri-organotin (IV) complexes of amino acids and related compounds, of 2-mercaptoethanesulphonate, and of purine-6-thiol. J Chem Soc Dalton Trans 3:523–527. https://doi.org/10.1039/dt9850000523

    Article  Google Scholar 

  20. Barbieri F, Viale M, Sparatore F, Schettini G, Favre A, Bruzzo C, Alama A (2002) Antitumor activity of a new orally active organotin compound: a preliminary study in murine tumor models. Anticancer Drugs 13(6):599–604. https://doi.org/10.1097/00001813-200207000-00006

    Article  PubMed  CAS  Google Scholar 

  21. Carraher CE, Battin A, Shahi KR, Roner MR (2007) Synthesis, structural characterization, and initial evaluation as anticancer drugs of dibutyltin polyamines derived from various 4, 6-diaminopyrimidines. J Inorg Organomet Polym Mater 17(4):631–639. https://doi.org/10.1007/s10904-007-9159-7

    Article  CAS  Google Scholar 

  22. Shuaibu MN, Kanbara H, Yanagi T, Ichinose A, Ameh DA, Bonire JJ, Nok AJ (2003) In vitro trypanocidal activity of dibutyltin dichloride and its fatty acid derivatives. Parasitol Res 91(1):5–11. https://doi.org/10.1007/s00436-003-0861-2

    Article  PubMed  CAS  Google Scholar 

  23. Sirajuddin M, Ali S (2013) Synthesis and characterization of potential bioactive organotins: azomethine based organotin (IV) complexes. LAP Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  24. Boussalah N, Touzani R, Bouabdallah I, El Kadiri S, Ghalem S (2009) Synthesis, structure and catalytic properties of tripodal amino-acid derivatized pyrazole-based ligands. J Mol Catal A 306(1–2):113–117. https://doi.org/10.1016/j.molcata.2009.02.031

    Article  CAS  Google Scholar 

  25. Titi A, Almutairi SM, Touzani R, Messali M, Tillard M, Hammouti B, El Kodadi M, Eddike D, Zarrouk A, Warad I (2021) A new mixed pyrazole-diamine/Ni(II) complex, crystal structure, physicochemical, thermal and antibacterial investigation. J Mol Struct 1236:130304. https://doi.org/10.1016/j.molstruc.2021.130304

    Article  CAS  Google Scholar 

  26. Titi A, Shiga T, Oshio H, Touzani (2020) Synthesis of novel Cl2Co4L6 cluster using 1-hydroxymethyl-3, 5-dimethylpyrazole (LH) ligand: crystal structure, spectral, thermal, Hirschfeld surface analysis and catalytic oxidation evaluation. J Mol Struct 1199:126995. https://doi.org/10.1016/j.molstruc.2019.126995

    Article  CAS  Google Scholar 

  27. Titi A, Warad I, Tillard M, Messali M, Touzani R (2020) Inermolecular interaction in [C6H10N3] 2 [CoCl4] complex: synthesis, XRD/HSA relation, spectral and catecholase catalytic analysis. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128422

    Article  Google Scholar 

  28. Titi A, Zaidi K, Alzahrani AYA, El Kodadi M, Yousfi EB, Moliterni A, Hammouti B, Touzani R, Abboud M (2023) New in situ catalysts based on nitro functional pyrazole derivatives and copper (II) salts for promoting oxidation of catechol to o-quinone. Catalysts 13(1):162. https://doi.org/10.3390/catal13010162

    Article  CAS  Google Scholar 

  29. El Boutaybi M, Titi A, Alzahrani AYA, Bahari Z, Tillard M, Hammouti B, Touzani R (2022) Aerial oxidation of phenol/catechol in the presence of catalytic amounts of [(Cl)2Mn(RCOOET)], RCOOET= Ethyl-5-Methyl-1-(((6-Methyl-3-Nitropyridin-2-yl)Amino)Methyl)-1H-Pyrazole-3-Carboxylate. Catalysts 12(12):1642. https://doi.org/10.3390/catal12121642

    Article  CAS  Google Scholar 

  30. Titi A, Oshio H, Messali M, Touzani R, Warad I (2020) Synthesis and XRD of novel Ni 4 (µ 3–O) 4 twist cubane cluster using three NNO mixed ligands: hirshfeld, spectral, thermal and oxidation properties. J Cluster Sci 32:227–234. https://doi.org/10.1007/s10876-020-01780-0

    Article  CAS  Google Scholar 

  31. Neves A, Rossi LM, Bortoluzzi AJ, Szpoganicz B, Wiezbicki C, Schwingel E, Ostrovsky S (2002) Catecholase activity of a series of dicopper (II) complexes with variable Cu− OH (phenol) moieties. Inorg Chem 41(7):1788–1794. https://doi.org/10.1021/ic010708u

    Article  PubMed  CAS  Google Scholar 

  32. Eicken C, Krebs B, Sacchettini JC (1999) Catechol oxidase—structure and activity. Curr Opin Struct Biol 9(6):677–683. https://doi.org/10.1016/S0959-440X(99)00029-9

    Article  PubMed  CAS  Google Scholar 

  33. Kupán A, Kaizer J, Speier G, Giorgi M, Réglier M, Pollreisz F (2009) Molecular structure and catechol oxidase activity of a new copper (I) complex with sterically crowded monodentate N-donor ligand. J Inorg Biochem 103(3):389–395. https://doi.org/10.1016/j.jinorgbio.2008.11.015

    Article  PubMed  CAS  Google Scholar 

  34. Guha A, Chattopadhyay T, Paul ND, Mukherjee M, Goswami S, Mondal TK, Das D (2012) Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands. Inorg Chem 51(16):8750–8759. https://doi.org/10.1021/ic300400v

    Article  PubMed  CAS  Google Scholar 

  35. Mouadili A, Attayibat A, Kadiri S, Radi S, Touzani R (2013) Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands. Appl Catal A 454:93–99. https://doi.org/10.1016/j.apcata.2013.01.011

    Article  CAS  Google Scholar 

  36. Dahmani M, Ettouhami A, El Bali B, Yahyi A, Wilson C, Ullah K, Imad R, Ullah S, Wajid S, Arshad F, Elmsellem H (2020) Organotin (IV) derivative of piperic acid and phenylthioacetic acid: synthesis, crystal structure, spectroscopic characterizations and biological activities. Mor J Chem 8(1):244–263. https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i1.17762

    Article  CAS  Google Scholar 

  37. Dahmani M, Et-Touhami A, Yahyi A, Harit T, Eddike D, Tillard M, Benabbes R (2020) Synthesis, characterization, X-ray structure and in vitro antifungal activity of triphenyltin complexes based on pyrazole dicarboxylic acid derivatives. J Mol Struct 1225:129137. https://doi.org/10.1016/j.molstruc.2020.129137

    Article  CAS  Google Scholar 

  38. Dahmani M, Harit T, Et-touhami A, Yahyi A, Eddike D, Tillard M, Benabbes R (2021) Two novel macrocyclic organotin (IV) carboxylates based on bipyrazoledicarboxylic acid derivatives: syntheses, crystal structures and antifungal activities. J Organomet Chem 948:121913. https://doi.org/10.1016/j.jorganchem.2021.121913

    Article  CAS  Google Scholar 

  39. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer. https://doi.org/10.1007/978-3-319-15482-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Kodadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titi, A., Dahmani, M., Abbaoui, Z. et al. New catalysts based on carboxylate Sn(IV) complexes used in the oxidation reaction of 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone. Reac Kinet Mech Cat 137, 133–148 (2024). https://doi.org/10.1007/s11144-023-02525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02525-6

Keywords

Navigation