Skip to main content
Log in

The photo-electrochemical properties of nano-sized ZnO. Application for the oxidation of dyes under sunlight

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

To evaluate its photoactivity under solar light, ZnO with a nano morphology with crystallites sizes ranging from 2.5 to 5 µm was prepared by the acetate decomposition (ZnO-Nit) by one-step calcination. The powders were characterized by X-ray diffraction and transmission electron microscopy. The optical band gap of ZnO-Ac (3.23 eV) was determined from the diffuse reflectance and the transition is directly allowed, assigned to the charge transfer O2−: 2p → Zn2+: 4s. The capacitance-potential (C−2–E) characteristic plotted at pH ~ 7 shows n type behaviour with a conduction band (− 0.85 VSCE), made up of Zn2+: 4s orbital and positive of the O2/O2 level and a valence band (2.56 VSCE) deriving mostly from O2−: 2p orbital whose potential is less anodic than the OH/H2O level. So, ZnO was successfully used for the degradation of two hazardous dyes namely the Reactive Blue 19 (RB 19) by the radicals OH and O2•− under sunlight. Indeed, RB 19 is a vinyl sulphone dye, difficult to oxidize because its anthrax quinone stabilized by mesomery. The best performance is due to enhanced active surface area (59 m2 g−1). The RB 19 oxidation follows a zeroth order kinetic with a rate constant of 7.3 × 10–3 mol L−1 min−1 for a concentration 10 mg L−1. The RB 19 elimination was followed by chemical oxygen demand and a photodegradation mechanism was proposed to explain the high performance of the catalyst upon solar light. For a comparative purpose, the oxidation of Rhodamine B is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The isoelectric point (IP) was measures from the equilibrium pH of a solution containing an excess of ZnO powder.

  2. The density is calculated from the relation XRD = Z M/NV where the symbols have their usual significations.

References

  1. Zhao L, Wang W, Zhu L, Liu Y, Dubios A (2018) Economic analysis of solar energy development in North Africa. Global Energy Interconnect 1:53–62. https://doi.org/10.14171/j.2096-5117.gei.2018.01.007

    Article  Google Scholar 

  2. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH (2018) Solar energy: potential and future prospects. Renew Sustain Energy Rev 82:894–900. https://doi.org/10.1016/j.rser.2017.09.094

    Article  Google Scholar 

  3. Stambouli AB, Khiat Z, Flazi S, Kitamura Y (2012) A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renew Sustain Energy Rev 16:4445–4460. https://doi.org/10.1016/j.rser.2012.04.031

    Article  Google Scholar 

  4. Abid H, Rekhila G, Ihaddadene FA, Bessekhouad Y, Trari M (2019) Hydrogen evolution under visible light illumination on the solid solution CdxZn1-xS prepared by ultrasound-assisted route. Int J Hydrogen Energy 44:1–8. https://doi.org/10.1016/j.ijhydene.2019.02.231

    Article  CAS  Google Scholar 

  5. Cherifi K, Allalou N, Rekhila G, Trari M, Bessekhouad Y (2014) Nitrate-processing and characterization of a cobalt-doped barium tin oxide perovskite: magnetic, transport and photoelectrochemical properties. Mater Sci Semicond Process 30:571–577. https://doi.org/10.1016/j.mssp.2015.10.018

    Article  CAS  Google Scholar 

  6. Rekhila G, Bessekhouad Y, Trari M (2016) Synthesis and characterization of the spinel ZnFe2O4, application to the chromate reduction under visible light. Environ Technol Innov 5:127–135. https://doi.org/10.1016/j.eti.2016.01.007

    Article  Google Scholar 

  7. Kumar A, Rana A, Sharma G, Naushad M, Al-muhtaseb AH, Guo C et al (2018) High-performance photocatalytic hydrogen production and degradation of levo floxacin by wide spectrum-responsive Ag/Fe3O4 bridged SrTiO3/g-C3N4 plasmonic nanojunctions : joint effect of Ag and Fe3O4. ACS Appl Mater Interfaces 10:40474–40490. https://doi.org/10.1021/acsami.8b12753

    Article  CAS  PubMed  Google Scholar 

  8. Sharma G, Pathania D, Naushad M, Kothiyal NC (2014) Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J 251:413–421. https://doi.org/10.1016/j.cej.04.074

    Article  CAS  Google Scholar 

  9. Kaizra S, Louafi Y, Bellal B, Trari M, Rekhila G (2015) Electrochemical growth of tin(II) oxide films: application in photocatalytic degradation of methylene blue. Mater Sci Semicond Process 30:554–560. https://doi.org/10.1016/j.mssp.2014.10.045

    Article  CAS  Google Scholar 

  10. Miodrag Belosevic MGEDZSJRB (2014) Degradation of alizarin yellow R using UV/H2O2 advanced oxidation process. Environ Sci Technol 33:482–489

    Google Scholar 

  11. Roumila Y, Abdmeziem K, Rekhila G, Trari M (2015) Semiconducting properties of hydrothermally synthesized libethenite application to orange G photodegradation. Mater Sci Semicond Process 2016:41. https://doi.org/10.1016/j.mssp.10.018

    Article  Google Scholar 

  12. Ohtani B, Li D, Abe R (2010) Journal of photochemistry and photobiology A: chemistry what is Degussa (Evonik) P25 ? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test 216:179–182. https://doi.org/10.1016/j.jphotochem.2010.07.024

    Article  CAS  Google Scholar 

  13. Li X, Cao X, Xu L, Liu L, Wang Y, Meng C et al (2015) High dielectric constant in Al-doped ZnO ceramics using high-pressure treated powders. J Alloy Compd 657:90–94. https://doi.org/10.1016/j.jallcom.2016.10.079

    Article  CAS  Google Scholar 

  14. Boukhemikhem Z, Brahimi R, Rekhila G, Fortas G, Boudjellal L, Trari M (2020) The photocatalytic hydrogen formation and NO2 oxidation on the hetero-junction Ag/NiFe2O4 prepared by chemical route. Renew Energy 145:2615–2620. https://doi.org/10.1016/j.renene.2019.08.021

    Article  CAS  Google Scholar 

  15. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) Improvement of eosin visible light degradation using PbS-sensititized TiO2. J Photochem Photobiol A 194:173–180. https://doi.org/10.1016/j.jphotochem.08.008

    Article  Google Scholar 

  16. Cherifi K, Rekhila G, Omeiri S, Bessekhouad Y, Trari M (2019) Physical and photoelectrochemical properties of the spinel ZnCr2O4 prepared by sol gel: application to Orange II degradation under solar light. J Photochem Photobiol A 368:290–295. https://doi.org/10.1016/j.jphotochem.2018.10.003

    Article  CAS  Google Scholar 

  17. Farbod M, Jafarpoor E (2013) Hydrothermal synthesis of different colors and morphologies of ZnO nanostructures and comparison of their photocatalytic properties. Ceram Int 40:6605–6610. https://doi.org/10.1016/j.ceramint.11.116

    Article  Google Scholar 

  18. Liang S, Zhu L, Gai G, Yao Y, Huang J, Ji X et al (2014) Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property. Ultrason Sonochem 21:1335–1342. https://doi.org/10.1016/j.ultsonch.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  19. Shraavan S, Challagulla S, Banerjee S, Roy S (2017) Unusual photoluminescence of Cu–ZnO and its correlation with photocatalytic reduction of Cr(VI). Bull Mater Sci 40:1415–1420. https://doi.org/10.1007/s12034-017-1496-8

    Article  CAS  Google Scholar 

  20. Dib K, Trari M, Bessekhouad Y (2019) (S,C) co-doped ZnO properties and enhanced photocatalytic activity. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144541

    Article  Google Scholar 

  21. Payra S, Challagulla S, Bobde Y, Chakraborty C, Ghosh B, Roy S (2019) Probing the photo- and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J Hazard Mater 373:377–388. https://doi.org/10.1016/j.jhazmat.2019.03.053

    Article  CAS  PubMed  Google Scholar 

  22. Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloy Compd 727:792–820. https://doi.org/10.1016/j.jallcom.08.142

    Article  CAS  Google Scholar 

  23. Penkov OV, Lee HJ, Plaksin VY, Mansur R, Kim JH (2010) Deposition of the ZnO transparent electrodes at atmospheric pressure using a DC arc plasmatron. Thin Solid Films 518:6160–6162. https://doi.org/10.1016/j.tsf.2010.02.072

    Article  CAS  Google Scholar 

  24. Ding M, Zhao D, Yao B, Zhao B, Xu X (2013) High brightness light emitting diode based on single ZnO microwire. Chem Phys Lett 577:88–91. https://doi.org/10.1016/j.cplett.2013.05.037

    Article  CAS  Google Scholar 

  25. Ketir W, Rekhila G, Trari M, Amrane A (2012) Vopor-polymerization strategy to carbon-rich holey few-layer carbon nitride nanosheets with large domain size for superior photocatalytic hydrogen evolution. J Environ Sci 24:2173–2179. https://doi.org/10.1016/S1001-0742(11)61043-7

    Article  CAS  Google Scholar 

  26. Rekhila G, Saidani A, Hocine F, Habi Ben Hariz S, Trari M (2020) Characterization of the hetero-system­ZnCo2O4/ZnO prepared by sol gel: application to the degradation of Ponceau 4R under solar light. Appl Phys A 126:620. https://doi.org/10.1007/s00339-020-03766-1

    Article  CAS  Google Scholar 

  27. Yan X, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem Phys Lett 429:606–610. https://doi.org/10.1016/j.cplett.2006.08.081

    Article  CAS  Google Scholar 

  28. Di PA, Garc E, Ikeda S, Marc G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75:87–93. https://doi.org/10.1016/S0920-5861(02)00048-2

    Article  Google Scholar 

  29. Smazna D, Shree S, Polonskyi O, Lamaka S, Baum M (2019) Mutual interplay of ZnO micro- and nanowires and methylene blue during cyclic photocatalysis process. J Environ Chem Eng https://doi.org/10.1016/j.jece.2019.103016

    Article  Google Scholar 

  30. Payra S, Ganeshan SK, Challagulla S, Roy S (2019) A correlation story of syntheses of ZnO and their influence on photocatalysis. Adv Powder Technol 31:510–520. https://doi.org/10.1016/j.apt.2019.11.006

    Article  CAS  Google Scholar 

  31. Ouagagui O, Rekhila G, Nedjar R, Trari M (2020) Synthesis, physical and photoelectrochemical characterizations of Sr0.5Nb3O8·1.7H2O: application to the Rhodamine B oxidation under solar light. J Mater Sci: Mater Electron 31:1257–1264. https://doi.org/10.1007/s10854-019-02637-7

    Article  CAS  Google Scholar 

  32. Ouagagui O, Rekhila G, Nedjar R, Trari M (2020) Soft-chemical synthesis and characterization of new niobate Ca0.5Nb3O8⋅1.5H2O: application to the degradation of Rhodamine B under solar light. J Photochem Photobiol A 398:112610. https://doi.org/10.1016/j.jphotochem.2020.112610

    Article  CAS  Google Scholar 

  33. Phuruangrat A, Siri S, Wadbu P, Thongtem S, Siri S, Wadbu P et al (2018) Hydrothermal synthesis of I-doped Bi2WO6 for using as a visible-light-driven photocatalyst. Mater Lett 224:67–70. https://doi.org/10.1016/j.matlet.2018.04.082

    Article  CAS  Google Scholar 

  34. Rajamanickam S, Mohammad SM, Hassan Z (2020) Effect of zinc acetate dihydrate concentration on morphology of ZnO seed layer and ZnO nanorods grown by hydrothermal method. Colloids Interface Sci Commun https://doi.org/10.1016/j.colcom.2020.100312

    Article  Google Scholar 

  35. Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuators A 267:242–261. https://doi.org/10.1016/j.sna.2017.10.021

    Article  CAS  Google Scholar 

  36. Bagtache R, Abdmeziem K, Rekhila G, Trari M (2019) Synthesis, physical and electrochemical characterizations of organically templated cobalt-aluminophosphate. Application to oxygen evolution. J Mater Sci 30:10. https://doi.org/10.1007/s10854-019-01865-1

    Article  CAS  Google Scholar 

  37. Moualkia H, Rekhila G, Mahdjoub A, Trari M (2017) The semiconducting properties of CdS nanocrystalline thin films prepared by chemical bath deposition. Application to the eosin photodegradation. J Mater Sci 28:19105–19112. https://doi.org/10.1007/s10854-017-7865-7

    Article  CAS  Google Scholar 

  38. Li Y, Li Z, Xia Y, Li H, Shi J, Zhang A et al (2020) Fabrication of ternary AgBr/BiPO4/g-C3N4 heterostructure with dual Z-scheme and its visible light photocatalytic activity for Reactive Blue 19. Environ Res. https://doi.org/10.1016/j.envres.110260

    Article  PubMed  PubMed Central  Google Scholar 

  39. Martorell MM, Pajot HF, Figueroa LIC (2017) Biological degradation of Reactive Black 5 dye by yeast Trichosporon akiyoshidainum. J Environ Chem Eng 5:5987–5993. https://doi.org/10.1016/j.jece.2017.11.012

    Article  CAS  Google Scholar 

  40. Mustafa MM, Jamal P, Alkhatib MF, Mahmod SS, Jimat DN, Ilyas NN (2017) Panus tigrinus as a potential biomass source for Reactive Blue decolorization: isotherm and kinetic study. Electron J Biotechnol 26:7–11. https://doi.org/10.1016/j.ejbt.2016.12.001

    Article  Google Scholar 

  41. Sharma G, Dionysiou DD, Sharma S, Kumar A, Al-Muhtaseb AH, Naushad M et al (2019) Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal Today 335:437–451. https://doi.org/10.1016/j.cattod.03.063

    Article  CAS  Google Scholar 

  42. Nguyen CH, Juang RS (2019) Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. J Ind Eng Chem 76:296–309. https://doi.org/10.1016/j.jiec.2019.03.054

    Article  CAS  Google Scholar 

  43. Reza KM, Kurny A, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578. https://doi.org/10.1007/s13201-015-0367-y

    Article  CAS  Google Scholar 

  44. Diaz-Angulo J, Porras J, Mueses M, Torres-Palma RA, Hernandez-Ramirez A, Machuca-Martinez F (2019) Coupling of heterogeneous photocatalysis and photosensitized oxidation for diclofenac degradation: role of the oxidant species. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2019.112015

    Article  Google Scholar 

  45. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Hasnain IM (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36. https://doi.org/10.1016/j.jiec.2014.10.043

    Article  CAS  Google Scholar 

  46. Huang N, Shu J, Wang Z, Chen M, Ren C, Zhang W (2015) One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. J Alloy Compd 648:919–929. https://doi.org/10.1016/j.jallcom.2015.07.039

    Article  CAS  Google Scholar 

  47. Jianzhong M, Liu J, Bao Y, Zhu Z, Liu H (2013) Morphology-photocatalytic properties-growth mechanism for ZnO nanostructures via microwave-assisted hydrothermal synthesis. Cryst Res Technol 48:251–260. https://doi.org/10.1002/crat.201300026

    Article  CAS  Google Scholar 

  48. Sharma G, Kumar A, Sharma S, Naushad M, Dhiman P et al (2020) Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution. Mater Lett. https://doi.org/10.1016/j.matlet.2020.128359

    Article  Google Scholar 

  49. Payra S, Likhitha Reddy K, Sharma RS, Singh S, Roy S (2020) A trade-off between adsorption and photocatalysis over ZIF-derived composite. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122491

    Article  PubMed  Google Scholar 

  50. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045

    Article  CAS  PubMed  Google Scholar 

  51. Rezapour M, Talebian N (2011) Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: effect of synthesis methods and reaction media. Mater Chem Phys 129:249–255. https://doi.org/10.1016/j.matchemphys.2011.04.012

    Article  CAS  Google Scholar 

  52. Dib K, Brahimi R, Bessekhouad Y, Tayebi N, Trari M (2016) Structural, optical and transport properties of SxZnO. Mater Sci Semicond Process 48:52–59. https://doi.org/10.1016/j.mssp.2016.03.010

    Article  CAS  Google Scholar 

  53. Zebbar N, Trari M, Doulache M, Boughelout A, Chabane L (2014) Physical and photo-electrochemical characterizations of ZnO thin films deposited by ultrasonic spray method: application to HCrO 4- photoreduction. Appl Surf Sci 292:837–842. https://doi.org/10.1016/j.apsusc.2013.12.059

    Article  CAS  Google Scholar 

  54. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis 1:1–21

    CAS  Google Scholar 

  55. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227. https://doi.org/10.1016/j.chemosphere.2017.12.195

    Article  CAS  PubMed  Google Scholar 

  56. Ani IJ, Akpan UG, Olutoye MA, Hameed BH (2018) Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts: recent development. J Clean Prod 205:930–954. https://doi.org/10.1016/j.jclepro.2018.08.189

    Article  CAS  Google Scholar 

  57. Pudukudy M, Yaakob Z, Rajendran R, Kandaramath T (2014) Photodegradation of methylene blue over novel 3D ZnO microflowers with hexagonal pyramid-like petals. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-014-0703-5

    Article  Google Scholar 

  58. Rafaie HA, Nor RM, Azmina MS, Ramli NIT, Mohamed R (2017) Decoration of ZnO microstructures with Ag nanoparticles enhanced the catalytic photodegradation of methylene blue dye 17:30374–30383. https://doi.org/10.1016/j.jece.2017.07.070

    Article  CAS  Google Scholar 

  59. Letsholathebe D, Thema FT, Mphale K, Maabong K, Magdalane CM (2020) Green synthesis of ZnO doped Moringa oleifera leaf extract using Titon yellow dye for photocatalytic applications. Mater Today. https://doi.org/10.1016/j.matpr.2020.05.119

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr R. Bagtache for her assistance in the optical properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rekhila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekhila, G., Trari, M. The photo-electrochemical properties of nano-sized ZnO. Application for the oxidation of dyes under sunlight. Reac Kinet Mech Cat 133, 501–516 (2021). https://doi.org/10.1007/s11144-021-01985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01985-y

Keywords

Navigation