Skip to main content
Log in

Synthesis, physical and electrochemical characterizations of organically templated cobalt-aluminophosphate. Application to oxygen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hybrid semiconductor CYCHA-CoAl2P3O12·mH2O was elaborated by hydrothermal route at 453 K in presence of cyclohexylamine (CYCHA) as organic template. The X-ray diffraction pattern of the blue product indicates a zeolite type CAP-CHA 5 topology which crystallizes in a hexagonal system (SG:R\( \overline{3} \)) with the lattice constants: a = 13.5494 (3) Å, c = 15.2795 (5) Å. The optical, physical and photo-electrochemical characterizations of the material were investigated. The diffuse reflectance indicates an optical transition at 1.84 eV, directly allowed due to the crystal field splitting of Co 3+ in tetrahedral coordination. The electrical conduction occurs by low polaron hopping with activation energy of 37 meV. The conduction band is formed by Co3+: e.g. orbital (5.15 eV) below vacuum. The valence band, deriving mostly from O2−: 2p orbital with a potential (6.85 eV), is adequately located with respect to O2/H2O level (~ 1.40 VSCE), thus leading to an oxidation of water under illumination. The best photoactivity was found at neutral pH (~ 7) with an oxygen evolution rate of 38 µmol min−1 g−1 and a quantum yield of 0.40%. The as-synthesized material also showed adsorption capacity of 90% of the methyl violet dye in aqueous solution with a half life of 43 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.T.L. Nguyen, C.V. Nguyen, G.H. Dang, K.K.A. Le, N.S. Phan, J. Mol. Catal. A 349, 28–35 (2011)

    Article  Google Scholar 

  2. S. Pourebrahimi, M. Kazemeini, E.G. Babakhani, A. Taheri, Microporous Mesoporous Mater. 218, 144–152 (2015)

    Article  Google Scholar 

  3. X. Li, X.L. Chi, Y.C. Xu, Y. Chen, Q. Yang, X.S. Zeng, H.L. Xu, D.-R. Xiao, Inorg. Chem. Commun. 69, 52–56 (2016)

    Article  Google Scholar 

  4. A. Samet, H. Boughzala, H. Khemakhem, Y. Abid, J. Mol. Struct. 984, 23–29 (2010)

    Article  Google Scholar 

  5. X. Li, Y. Chen, X.L. Chi, Y.C. Xu, Q. Yang, H.Y. Zhang, J.L. Zhang, D.R. Xiao, Inorg. Chim. Acta 437, 159–166 (2015)

    Article  Google Scholar 

  6. M. Karimi, A. Badiei, N. Lashgari, J. Afshani, G.M. Ziarani, J. Lumin. 168, 1–6 (2015)

    Article  Google Scholar 

  7. H.W. Langmi, J. Ren, N.M. Musyoka, Compendium of Hydrogen Energy (Woodhead Publishing, Oxford, 2016), pp. 163–188

    Book  Google Scholar 

  8. W.Q. Kan, S.Z. Wen, Y.H. Kan, H.Y. Hu, S.Y. Niu, X.Y. Zhang, Synth. Met. 198, 51–58 (2014)

    Article  Google Scholar 

  9. D. Meziani, K. Abdmeziem, S. Bouacida, M. Trari, H. Merazig, Sol. Energy Mater. Sol. Cells 147, 46–52 (2016)

    Article  Google Scholar 

  10. R. Bagtache, G. Rekhila, K. Abdmeziem, M. Trari, Mater. Sci. Semicond. Process. 23, 144–150 (2014)

    Article  Google Scholar 

  11. E. Cariati, E. Lucenti, C. Botta, U. Giovanella, D. Marinotto, S. Righetto, Coord. Chem. Rev. 306, 566–614 (2016)

    Article  Google Scholar 

  12. P. Chen, J. Li, J. Yu, Y. Wang, Q. Pan, R. Xu, J. Solid State Chem. 178, 1929–1934 (2005)

    Article  Google Scholar 

  13. A. John, D. Philip, K.R. Morgan, S. Devanarayanan, Spectrochim. Acta Part A 56, 2715–2723 (2000)

    Article  Google Scholar 

  14. X. Bu, P. Feng, T.E. Gier, G.D. Stucky, Microporous Mesoporous Mater. 23, 323–330 (1998)

    Article  Google Scholar 

  15. X. Song, J. Li, Y. Guo, Q. Pan, L. Gan, J. Yu, R. Xu, Inorg. Chem. 48, 198–203 (2009)

    Article  Google Scholar 

  16. L. Shao, Y. Li, J. Yu, R. Xu, Inorg. Chem. 51, 225–229 (2012)

    Article  Google Scholar 

  17. P. Feng, X. Bu, T.E. Gier, G.D. Stucky, Microporous Mesoporous Mater. 23, 221–229 (1998)

    Article  Google Scholar 

  18. G. Muncaster, G. Sankar, C.R.A. Catlow, J.M. Thomas, R.G. Bell, P.A. Wright, S. Coles, S.J. Teat, W. Clegg, W. Reeve, Chem. Mater. 11, 158–163 (1999)

    Article  Google Scholar 

  19. R. Kefi, C. Ben Nasr, F. Lefebvre, M. Rzaigui, Polyhedron 26, 1603–1611 (2007)

    Article  Google Scholar 

  20. B. Tripathi, P. Bhatt, P. Chandra Kanth, P. Yadav, B. Desai, M. Kumar Pandey, Sol. Energy Mater. Sol. Cells 132, 615–622 (2015)

    Article  Google Scholar 

  21. S. Joiret, G. Campet, J. Claverie, Mater. Lett. 5, 468–474 (1987)

    Article  Google Scholar 

  22. R. Bagtache, K. Abdmeziem, G. Rekhila, M. Trari, Mater. Sci. Semicond. Process. 51, 1–7 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Bagtache or M. Trari.

Ethics declarations

Conflict of interest

The authors have no conflict of interest financial, personal or other relationships with other people, laboratories or organizations worldwide.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagtache, R., Abdmeziem, K., Rekhila, G. et al. Synthesis, physical and electrochemical characterizations of organically templated cobalt-aluminophosphate. Application to oxygen evolution. J Mater Sci: Mater Electron 30, 14928–14934 (2019). https://doi.org/10.1007/s10854-019-01865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01865-1

Navigation