Skip to main content

Advertisement

Log in

Characterization of the hetero-system ZnCo2O4/ZnO prepared by sol gel: application to the degradation of Ponceau 4R under solar light

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ponceau 4R is successfully oxidized on the hetero-system ZnCo2O4/ZnO under the solar light. The spinel with a nano-morphology is elaborated by the sol gel method at ~ 850 °C. The X-ray diffraction pattern exhibits narrow peak characteristics that reveals a good crystallization. The capacitance−2–potential (C−2E) plot of the semiconductor ZnCo2O4 indicates p type behavior from which a flat band potential of + 0.30 VSCE is determined. The energy band diagram, built from the physic-chemical properties, clearly predicts the electron transfer from the conduction band of ZnCo2O4 toward dissolved oxygen via ZnO. Indeed, the ZnCo2O4/ZnO composite improves the photocatalytic performance, where the colloidal photochemical hetero-system is successfully used for the light induced Ponceau 4R oxidation. The spinel dose and Ponceau 4R concentration are optimized. The conversion rate is controlled by UV–Visible spectrophotometry and, under the ideal conditions, the oxidation of 70% of Ponceau 4R (15 ppm) is obtained in aerated solution for less than 4 h when exposed to the solar light. The oxidation obeys a first order kinetic with a half-photocatalytic life of 130 min (k ~ 52 × 10−4 min−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Haddadou, N. Bensemma, G. Rekhila, M. Trari, K. Taïbi, Lead-free Ba application to amoxicillin photodegradation. J. Photochem. Photobiol. A Chem. Photoelectrochem. Investig. 358, 294–299 (2018). https://doi.org/10.1016/j.jphotochem.2018.03.033

    Article  Google Scholar 

  2. Z. Hammache, A. Soukeur, S. Omeiri, B. Bellal, M. Trari, Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue. J. Mater. Sci. Mater. Electron. 30, 5375–5382 (2019). https://doi.org/10.1007/s10854-019-00830-2

    Article  Google Scholar 

  3. A.M. Sevim, Synthesis and characterization of Zn and Co monocarboxy-phthalocyanines and investigation of their photocatalytic efficiency as TiO2 composites. J. Organomet. Chem. 832, 18–26 (2017). https://doi.org/10.1016/j.jorganchem.2017.01.011

    Article  Google Scholar 

  4. D. Zhang, Y. Yin, Y. Li, Y. Cai, J. Liu, Critical role of natural organic matter in photodegradation of methylmercury in water: molecular weight and interactive effects with other environmental factors. Sci. Total Environ. 578, 535–541 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.222

    Article  ADS  Google Scholar 

  5. A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J. Ind. Eng. Chem. 20, 937–946 (2014). https://doi.org/10.1016/j.jiec.2013.06.026

    Article  Google Scholar 

  6. O. Ouagagui, G. Rekhila, R. Nedjar, M. Trari, Synthesis, physical and photoelectrochemical characterizations of Sr0.5Nb3O8·1.7H2O: application to the Rhodamine B oxidation under solar light. J. Mater. Sci. Mater. Electron. 31, 1257–1264 (2020). https://doi.org/10.1007/s10854-019-02637-7

    Article  Google Scholar 

  7. A. Mills, N. Wells, C. O’Rourke, Correlation between the photocatalysed oxidation of methylene blue in solution and the reduction of resazurin in a photocatalyst activity indicator ink (Rz Paii). J. Photochem. Photobiol. A 330, 86–89 (2016). https://doi.org/10.1016/j.jphotochem.2016.07.020

    Article  Google Scholar 

  8. M. Bingham, A. Mills, Photonic efficiency and selectivity study of M (M = Pt, Pd, Au and Ag)/TiO2 photocatalysts for methanol reforming in the gas phase. J. Photochem. Photobiol. A Chem. (2020). https://doi.org/10.1016/j.jphotochem.2019.112257

    Article  Google Scholar 

  9. Z. Boukhemikhem, R. Brahimi, G. Rekhila, G. Fortas, L. Boudjellal, M. Trari, The photocatalytic hydrogen formation and NO2 oxidation on the hetero-junction Ag/NiFe2O4 prepared by chemical route. Renew. Energy 145, 2615–2620 (2020). https://doi.org/10.1016/j.renene.2019.08.021

    Article  Google Scholar 

  10. S. Douafer, H. Lahmar, M. Benamira, G. Rekhila, M. Trari, Physical and photoelectrochemical properties of the spinel LiMn2O4 and its application in photocatalysis. J. Phys. Chem. Solids 118, 62–67 (2018). https://doi.org/10.1016/j.jpcs.2018.02.053

    Article  ADS  Google Scholar 

  11. I. Sebai, N. Salhi, G. Rekhila, M. Trari, Visible light induced H2 evolution on the spinel NiAl2O4 prepared by nitrate route. Int. J. Hydrogen Energy 42, 26652–26658 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.092

    Article  Google Scholar 

  12. M. Zangiabadi, A. Saljooqi, T. Shamspur, A. Mostafavi, Evaluation of GO nanosheets decorated by CuFe2O4 and CdS nanoparticles as photocatalyst for the degradation of dinoseb and imidacloprid pesticides. Ceram. Int. 46, 6124–6128 (2020). https://doi.org/10.1016/j.ceramint.2019.11.076

    Article  Google Scholar 

  13. G. Rekhila, Y. Bessekhouad, M. Trari, Hydrogen evolution under visible light over the solid solution NiFe2−xMnxO4 prepared by sol gel. Int. J. Hydrogen Energy 40, 12611–12618 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.109

    Article  Google Scholar 

  14. Y. Roumila, K. Abdmeziem, G. Rekhila, M. Trari, Semiconducting properties of hydrothermally synthesized libethenite application to orange G photodegradation. Mater. Sci. Semiconduct. Process. (2016). https://doi.org/10.1016/j.mssp.2015.10.018

    Article  Google Scholar 

  15. G. Zhou, J. Guo, G. Zhou, X. Wan, H. Shi, Photodegradation of orange II using waste paper sludge-derived heterogeneous catalyst in the presence of oxalate under ultraviolet light emitting diode irradiation. J. Environ. Sci. (China) 47, 63–70 (2016). https://doi.org/10.1016/j.jes.2015.11.030

    Article  Google Scholar 

  16. H. Abid, G. Rekhila, F.A. Ihaddadene, Y. Bessekhouad, M. Trari, Direct hydrogen evolution under visible light illumination on the solid solution CdxZn1−xS prepared by ultrasound-assisted route. Int. J. Hydrogen Energy 4, 4–11 (2019)

    Google Scholar 

  17. U. Caudillo-Flores, M.J. Muñoz-Batista, M. Fernández-García, A. Kubacka, Bimetallic Pt–Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Appl. Catal. B 238, 533–545 (2018). https://doi.org/10.1016/j.apcatb.2018.07.047

    Article  Google Scholar 

  18. G. Rekhila, R. Brahimi, Y. Bessekhouad, M. Trari, Physical and photoelectrochemical characterizations of the pyrochlore La1.9Ba0.1Sn2O7: application to chromate reduction under solar light. J. Photochem. Photobiol. A Chem. 332, 345–350 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.023

    Article  Google Scholar 

  19. G. Rekhila, Y. Bessekhouad, M. Trari, Synthesis and characterization of the spinel ZnFe2O4, application to the chromate reduction under visible light. Environ. Technol. Innov. 5, 127–135 (2016). https://doi.org/10.1016/j.eti.2016.01.007

    Article  Google Scholar 

  20. W. Ketir, G. Rekhila, M. Trari, A. Amrane, Vopor-polymerization strategy to carbon-rich holey few-layer carbon nitride nanosheets with large domain size for superior photocatalytic hydrogen evolution. J. Environ. Sci. (China) 24, 2173–2179 (2012). https://doi.org/10.1016/S1001-0742(11)61043-7

    Article  Google Scholar 

  21. G. Rekhila, Y. Bessekhouad, M. Trari, Visible light hydrogen production on the novel ferrite NiFe2O4. Int. J. Hydrogen Energy (2013). https://doi.org/10.1016/j.ijhydene.2013.03.087

    Article  Google Scholar 

  22. G. Rekhila, Y. Gabes, Y. Bessekhouad, M. Trari, Hydrogen production under visible illumination on the spinel NiMn2O4 prepared by sol gel. Sol. Energy 166, 220–225 (2018). https://doi.org/10.1016/j.solener.2018.02.064

    Article  ADS  Google Scholar 

  23. K. Shetty, L. Renuka, H.P. Nagaswarupa, H. Nagabhushana, Direct ICNANO 2016 morphology, impedance and photocatalytic studies. Mater. Today Proc. 4, 11806–11815 (2017). https://doi.org/10.1016/j.matpr.2017.09.098

    Article  Google Scholar 

  24. K. Shetty, L. Renuka, H.P. Nagaswarupa, H. Nagabhushana, K.S. Anantharaju, D. Rangappa et al., A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4: morphology, impedance and photocatalytic studies. Mater. Today Proc. 4, 11806–11815 (2017). https://doi.org/10.1016/j.matpr.2017.09.098

    Article  Google Scholar 

  25. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, S.G. Dorzhieva, Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 28, 1309–1315 (2017)

    Article  Google Scholar 

  26. V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Lin, M.S. Molokeev, A.P. Yelisseyev et al., Anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. J. Solid State Chem. Explor. 187, 159–164 (2012). https://doi.org/10.1016/j.jssc.2011.12.037

    Article  ADS  Google Scholar 

  27. A.H. Reshak, Z.A. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O. Dorzhitsyrenovna et al., Exploration of the electronic structure of monoclinic α-Eu 2 (MoO4) 3: DFT-based study and X-ray photoelectron spectroscopy. J. Phys. Chem. (2016). https://doi.org/10.1021/acs.jpcc.6b01489

    Article  Google Scholar 

  28. M.S. Yancheshmeh, O.A. Sahraei, M. Aissaoui, M.C. Iliuta, A novel synthesis of NiAl2O4 spinel from a Ni–Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming. Appl. Catal. B Environ. (2020). https://doi.org/10.1016/j.apcatb.2019.118535

    Article  Google Scholar 

  29. H. Gong, W. Chu, K. Xu, X. Xia, H. Gong, Y. Tan et al., Efficient degradation, mineralization and toxicity reduction of sulfamethoxazole under photo-activation of peroxymonosulfate by ferrate (VI). Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124084

    Article  Google Scholar 

  30. P.L. de Oliveira, N.S. Lima, A.C.F. de Melo Costa, E.B. Cavalcanti, Conrado L. de Sousa, Obtaining TiO2:CoFe2O4 nanocatalyst by Pechini method for diuron degradation and mineralization. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.12.203

    Article  Google Scholar 

  31. N. Bensemma, G. Rekhila, N. Boutal, K. Taãbi, M. Trari, Photoelectrochemical properties of lead-free ferroelectric ceramic Ba(Ti0.96Mg0.013Nb0.026)O3: application to solar conversion of eosin. J. Mater. Sci. Mater. Electron. 27, 6757–6765 (2016). https://doi.org/10.1007/s10854-016-4625-z

    Article  Google Scholar 

  32. B. Gomez-Ruiz, P. Ribao, N. Diban, M.J. Rivero, I. Ortiz, A. Urtiaga, Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2–rGO catalyst. J. Hazard. Mater. 344, 950–957 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.048

    Article  Google Scholar 

  33. K. Dib, R. Brahimi, M. Trari, Y. Bessekhouad, Optical properties of SxZnO and their effect toward the photoacativity. Optik 178, 1102–1110 (2019). https://doi.org/10.1016/j.ijleo.2018.10.101

    Article  ADS  Google Scholar 

  34. N. Helaïli, Y. Bessekhouad, A. Bouguelia, M. Trari, p-Cu2O/n-ZnO heterojunction applied to visible light Orange II degradation. Sol. Energy 84, 1187–1192 (2010). https://doi.org/10.1016/j.solener.2010.03.024

    Article  ADS  Google Scholar 

  35. N. Helaïli, Y. Bessekhouad, A. Bouguelia, M. Trari, Visible light degradation of orange II using xCuyOz/TiO2 heterojunctions. J. Hazard. Mater. 168, 484–492 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.066

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Thematic Research Agency for Science and Technology (ATRST) of Algeria, through the national research program (PM 01/2019, CNEPRU Project No B002014N160420190001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Rekhila or M. Trari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekhila, G., Saidani, A., Hocine, F. et al. Characterization of the hetero-system ZnCo2O4/ZnO prepared by sol gel: application to the degradation of Ponceau 4R under solar light. Appl. Phys. A 126, 620 (2020). https://doi.org/10.1007/s00339-020-03766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03766-1

Keywords

Navigation