Skip to main content
Log in

Synthesis, physical and photoelectrochemical characterizations of Sr0.5Nb3O8·1.7H2O: application to the Rhodamine B oxidation under solar light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The layered niobate Sr0.5Nb3O8·1.7H2O is synthesized by soft chemistry in aqueous electrolyte via Sr2+ → H+ exchange between strontium nitrate and niobic acid HNb3O8·H2O. The material is identified by X-ray diffraction using Rietveld refinement, thermal analysis (TG/DSC) and optical measurements. The semiconducting and photoelectrochemical properties are investigated for the first time. The band gap of Sr0.5Nb3O8·1.7H2O is evaluated at 3.67 eV, and the transition is directly allowed due to the charge transfer O2−: 2p → Nb5+: 4d. The thermal variation of the electrical conductivity shows that 4d electrons are localized and the data are fitted by a small-polaron hopping model: σ = σo exp {− 0.13 eV/kT}. The capacitance measurement done in the ionic electrolyte (Na2SO4, 10−2 M) indicates n-type semiconductivity with a flat band potential of − 0.09 VSCE. The conduction band, made up of Nb5+: 4d orbital, is located at − 0.22 VSCE. As application, Rhodamine B (RhB) is oxidized by photocatalysis on Sr0.5Nb3O8·1.7H2O through O·2 radicals; 56% of the initial concentration (10 mg L−1) is eliminated after 3 h under solar light (90 mW cm−2), and the Rh B oxidation follows a first-order kinetic with a rate constant of 0.246 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.M. Gangotri, M.K. Bhimwal, Electr. Power Energy Sys. 32, 1106–1110 (2010)

    Article  Google Scholar 

  2. X. Chen, S. Shen, L. Guo, S. Mao, Chem. Rev. 110, 6503–6570 (2010)

    Article  CAS  Google Scholar 

  3. A.D. Paolaa, E. Garcia-López, G. Marcìa, L. Palmisanoa, J. Hazard. Mater. 211, 3–29 (2012)

    Article  CAS  Google Scholar 

  4. G. Rekhila, R. Brahimi, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A 332, 345–350 (2017)

    Article  CAS  Google Scholar 

  5. P.I. Rajan, J.J. Vijaya, S.K. Jesudoss, K. Kaviyarasu, L.J. Kennedy, R. Jothiramalingam, H.A. Al-Lohedan, M.A. Vaali-Mohammed, Mater. Res. Express 4, 085030 (2017)

    Article  CAS  Google Scholar 

  6. C.M. Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, B. Jeyaraj, J. Kennedy, M. Maaza, J. Photochem. Photobiol. B 185, 275–282 (2018)

    Article  CAS  Google Scholar 

  7. C.M. Magdalanea, K. Kaviyarasuc, N. Matinisec, N. Mayedwac, N. Mongwaketsic, D. Letsholathebe, G.T. Mola, N.A. Al-Dhabi, M.V. Arasu, M. Heninic, J. Kennedyc, M. Maazac, B. Jeyaraj, S. Afr, J. Chem. Eng. 26, 49–60 (2018)

    Google Scholar 

  8. Q. Liu, H. Liu, X. Zhou, Ch. Cong, K. Zhang, Solid State Ionic 176, 1549–1554 (2005)

    Article  CAS  Google Scholar 

  9. X. Zhang, L. Liu, J. Ma, X. Yang, X. Xu, Z. Tong, Mater. Lett. 95, 21–24 (2013)

    Article  CAS  Google Scholar 

  10. G. Zhang, X. Zou, J. Gong, F. He, H. Zhang, S. Ouyang, H. Liu, Q. Zhang, Y. Lie, X. Yang, B. Hu, J. Mol. Catal. 255, 109–116 (2006)

    Article  CAS  Google Scholar 

  11. Z. Yang, Y.F. Li, Q. Wua, N. Ren, Y. Zhang, Z. Liu, Y. Tang, J. Catal. 280, 247–254 (2011)

    Article  CAS  Google Scholar 

  12. R. Nedjar, M.M. Borel, A. Leclaire, B. Raveau, Mater. Res. Bull. 23, 497–500 (1988)

    Article  CAS  Google Scholar 

  13. J. Escobala, J. Mesaa, J. Pizarrob, B. Bazanb, M. Arriortuab, T.-F. Rojo, J. Solid State Chem. 179, 3768–3775 (2006)

    Article  CAS  Google Scholar 

  14. B. Bellal, S. Saadi, N. Koriche, A. Bouguelia, M. Trari, J. Phys. Chem. Solids 70, 1132–1136 (2009)

    Article  CAS  Google Scholar 

  15. S. Boumaza, A. Bouguelia, R. Bouarab, M. Trari, Int. J. Hydrogen Energy 34, 4963–4967 (2009)

    Article  CAS  Google Scholar 

  16. H. Nakayama, M. Nose, S. Nakanishi, H. Iba, J. Power Sources 287, 158–163 (2015)

    Article  CAS  Google Scholar 

  17. R. Saroha, A. Gupta, A.-K. Panwar, J. Alloys. Compds. 696, 580–589 (2017)

    Article  CAS  Google Scholar 

  18. Q. Wei, T. Nakato, Microporous Mesoporous Mater. 96, 84–92 (2006)

    Article  CAS  Google Scholar 

  19. T. Nakato, K. Ito, K. Kuroda, C. Kato, Microporous Mater. 1, 283–286 (1993)

    Article  CAS  Google Scholar 

  20. S.K. Jesudoss, J.J. Vijaya, P.I. Rajan, K. Kaviyarasu, M. Sivachidambaram, L.J. Kennedy, H.A. Al-Lohedane, R. Jothiramalingame, Photochem. Photobiol. Sci. 16(5), 766–778 (2017). https://doi.org/10.1039/C7PP00006E

    Article  CAS  Google Scholar 

  21. X. Fuku, K. Kaviyarasu, N. Matinise, M. Maaza, Nanoscale Res. Lett. 11, 386–390 (2016)

    Article  CAS  Google Scholar 

  22. X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaza, Mater. Res. Bull. 97, 457–465 (2018)

    Article  CAS  Google Scholar 

  23. K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G.T. Mola, J. Kennedy, M. Maaza, Appl. Surf. Sci. 421, 234–239 (2017)

    Article  CAS  Google Scholar 

  24. N. Belmokhtar, R. Brahimi, R. Nedjar, M. Trari, Mater. Sci. Semicond. Proc. 39, 433–440 (2015)

    Article  CAS  Google Scholar 

  25. N. Chebahi, R. Nedjar, R. Brahimi, B. Bellal, M. Trari, Mater. Sci. Semicond. Proc. 68, 172–177 (2017)

    Article  CAS  Google Scholar 

  26. M.A. Bizeto, V.R.L. Constantino, H.F. Brito, J. Alloys. Compds. 311, 159–168 (2000)

    Article  CAS  Google Scholar 

  27. K. Sayama, A. Tanaka, K. Domen, K. Maruka, T. Onishi, J. Catal. 124, 541–547 (1990)

    Article  CAS  Google Scholar 

  28. A.S. Dias, S. Lima, D. Carriazo, V. Rives, M. Pillinger, A.A. Valente, J. Catal. 244, 230–237 (2006)

    Article  CAS  Google Scholar 

  29. H. Kato, A. Kudo, J. Photochem. Photobiol. A 145, 129–133 (2001)

    Article  CAS  Google Scholar 

  30. G. Zhang, J. Gong, X. Zou, F. He, H. Zhang, Q. Zhang, Y. Liu, X. Yang, B. Hu, J. Chem. Eng. 123, 59–64 (2006)

    Article  CAS  Google Scholar 

  31. X. Kong, Q. Lu, J. Huang, L. Li, J. Zhang, X. Wang, J. Li, Y. Wang, Q. Feng, J. Alloys Compds. 746, 68–76 (2018)

    Article  CAS  Google Scholar 

  32. M. Gasperin, Acta Cryst. B 38, 2024–2026 (1982)

    Article  Google Scholar 

  33. R. Nedjar, M.M. Borel, B. Raveau, Mater. Res. Bull. 20, 1291–1296 (1985)

    Article  CAS  Google Scholar 

  34. Y. Hu, G. Li, S. Zong, J. Shi, L. Guo, Catal. Today 315, 117–125 (2018)

    Article  CAS  Google Scholar 

  35. G. Zhang, Y. Hu, X. Ding, L. Zhou, J. Xie, J. Solid State Chem. 181, 2133–2138 (2008)

    Article  CAS  Google Scholar 

  36. M. Hervieu, C. Michel, B. Raveau, Bull. Soc. Chim. Fr. 11, 3939–3943 (1971)

    Google Scholar 

  37. A. Grandin, M.M. Borel, M. Hervieu, B. Raveau, J. Solid State Chem. 68, 369–374 (1987)

    Article  CAS  Google Scholar 

  38. A. Altomare, C. Cuocci, C. Ciacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Cryst. 46, 1231–1235 (2013)

    Article  CAS  Google Scholar 

  39. A. Altomare, G. Campi, C. Cuocci, L. Erksson, R. Rizzi, P.-E. Werner, J. Appl. Cryst. 42, 768–775 (2009)

    Article  CAS  Google Scholar 

  40. C.D. Whiston, A.J. Smith, Acta Cryst. 23, 82–84 (1967)

    Article  CAS  Google Scholar 

  41. J.-F. Liu, X.-L. Li, Y.-D. Li, J. Cryst. Growth 247, 419–424 (2003)

    Article  CAS  Google Scholar 

  42. T. Ban, S. Yoshikawa, Y. Ohya, J. Colloid Interface Sci. 364, 85–91 (2011)

    Article  CAS  Google Scholar 

  43. J. Xiong, Y. Liu, S. Liang, S. Zhang, Y. Li, L. Wu, J. Catal. 342, 98–104 (2016)

    Article  CAS  Google Scholar 

  44. R. Li, L. Liu, B. Ming, Y. Ji, R. Wang, Appl. Surf. Sci. 439, 983–990 (2018)

    Article  CAS  Google Scholar 

  45. Y. Bessekhouad, M. Trari, Int. J. Hydrogen Energy 40, 12611–12618 (2015)

    Article  CAS  Google Scholar 

  46. G. Rekhila, Y. Gabes, Y. Bessekhouad, M. Trari, Sol. Energy 166, 220–225 (2018)

    Article  CAS  Google Scholar 

  47. K. Cherifi, G. Rekhila, S. Omeiri, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A 368, 290–295 (2019)

    Article  CAS  Google Scholar 

  48. S. Kabouche, B. Bellal, Y. Louafi, M. Trari, Mater. Chem. Phys. 195, 229–235 (2017)

    Article  CAS  Google Scholar 

  49. L. Jiang, Y. Qiu, Z. Yi, J. Mater. Chem. A 1, 2878–2885 (2013)

    Article  CAS  Google Scholar 

  50. S. Raja, R.R. Babu, S.C. Mohan, K. Jothivenkatachalam, K. Ramamurthi, Appl. Surf. Sci. 497, 143737 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Faculty of Chemistry (USTHB University). The authors would like to thank Dr R. Bagtache, G. Bendiba and B. Mehdi for their optical, Raman and X-ray analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Rekhila or M. Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouagagui, O., Rekhila, G., Nedjar, R. et al. Synthesis, physical and photoelectrochemical characterizations of Sr0.5Nb3O8·1.7H2O: application to the Rhodamine B oxidation under solar light. J Mater Sci: Mater Electron 31, 1257–1264 (2020). https://doi.org/10.1007/s10854-019-02637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02637-7

Navigation