Skip to main content
Log in

CO oxidation over titania-supported gold catalysts obtained using polyoxometalate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work is devoted to the development of a versatile method of Au/TiO2 catalysts preparation using a polyoxometalate-based approach. It has been shown that the addition of polyoxometalates into an aqueous solution of Au3+ hydroxocomplexes has an evident stabilizing effect. Due to specified preparation conditions, the choice of the polyoxometalates is quite limited. The most convenient for this purpose compounds are niobium- and tungsten-containing polyoxometalates. Depending on preparation conditions and textural properties of used TiO2, dispersion of deposited gold particles can be varied within a range of 1–50 nm. The catalytic activity of the prepared Au/TiO2 catalysts is studied in a model reaction of CO oxidation. Besides the dispersion of Au particles, another key factor affecting the low-temperature activity of the Au/TiO2 catalysts in the CO oxidation is a reduction stage in the preparation procedures. Replace of hydrogen with CO results in the formation of more active and stable nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campbell CT (2004) Physics. The active site in nanoparticle gold catalysis. Science 306(5694):234–235. https://doi.org/10.1126/science.1104246

    Article  CAS  PubMed  Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126(15):4943–4950. https://doi.org/10.1021/ja0315199

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Shi H, Xu BQ (2005) Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed Engl 44(43):7132–7135. https://doi.org/10.1002/anie.200502101

    Article  CAS  PubMed  Google Scholar 

  5. Hashmi AS, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed Engl 45(47):7896–7936. https://doi.org/10.1002/anie.200602454

    Article  PubMed  Google Scholar 

  6. Fierro-Gonzalez JC, Gates BC (2008) Catalysis by gold dispersed on supports: the importance of cationic gold. Chem Soc Rev 37(9):2127–2134. https://doi.org/10.1039/b707944n

    Article  CAS  PubMed  Google Scholar 

  7. Williams WD, Shekhar M, Lee WS, Kispersky V, Delgass WN, Ribeiro FH, Kim SM, Stach EA, Miller JT, Allard LF (2010) Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. J Am Chem Soc 132(40):14018–14020. https://doi.org/10.1021/ja1064262

    Article  CAS  PubMed  Google Scholar 

  8. Campbell CT, Sharp JC, Yao YX, Karp EM, Silbaugh TL (2011) Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts. Faraday Discuss 152:227–239. https://doi.org/10.1039/c1fd00033k

    Article  CAS  PubMed  Google Scholar 

  9. Lam E, Hrapovic S, Majid E, Chong JH, Luong JH (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4(3):997–1002. https://doi.org/10.1039/c2nr11558a

    Article  CAS  PubMed  Google Scholar 

  10. Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506. https://doi.org/10.1021/cr3000785

    Article  CAS  PubMed  Google Scholar 

  11. Bao YS, Baiyin M, Agula B, Jia M, Zhaorigetu B (2014) Energy-efficient green catalysis: supported gold nanoparticle-catalyzed aminolysis of esters with inert tertiary amines by C-O and C-N bond activations. J Org Chem 79(14):6715–6719. https://doi.org/10.1021/jo500877m

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, He L, Liu YM, Cao Y (2014) Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc Chem Res 47(3):793–804. https://doi.org/10.1021/ar400165j

    Article  CAS  PubMed  Google Scholar 

  13. Zhang P, Qiao ZA, Jiang X, Veith GM, Dai S (2015) Nanoporous ionic organic networks: stabilizing and supporting gold nanoparticles for catalysis. Nano Lett 15(2):823–828. https://doi.org/10.1021/nl504780j

    Article  CAS  PubMed  Google Scholar 

  14. Zibareva IV, Ilina LY, Vedyagin AA (2019) Catalysis by nanoparticles: the main features and trends. Reac Kinet Mech Cat 127(1):19–24. https://doi.org/10.1007/s11144-019-01552-6

    Article  CAS  Google Scholar 

  15. Bukhtiyarov VI, Moroz BL, Bekk NE, Prosvirin IP (2009) Size effects in catalysis by supported metal nanoparticles. Catal Ind 1(1):17–28. https://doi.org/10.1134/s2070050409010036

    Article  Google Scholar 

  16. Villa A, Dimitratos N, Chan-Thaw CE, Hammond C, Veith GM, Wang D, Manzoli M, Prati L, Hutchings GJ (2016) Characterisation of gold catalysts. Chem Soc Rev 45(18):4953–4994. https://doi.org/10.1039/c5cs00350d

    Article  CAS  PubMed  Google Scholar 

  17. Louis C, Pluchery O (2017) Gold nanoparticles for physics, chemistry and biology. World Scientific, Singapore

    Book  Google Scholar 

  18. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309. https://doi.org/10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  19. Taketoshi A, Ishida T, Ohashi H, Honma T, Haruta M (2017) Preparation of gold clusters on metal oxides by deposition-precipitation with microwave drying and their catalytic performance for CO and sulfide oxidation. Chin J Catal 38(11):1888–1898. https://doi.org/10.1016/s1872-2067(17)62909-7

    Article  CAS  Google Scholar 

  20. Keita B, Liu T, Nadjo L (2009) Synthesis of remarkably stabilized metal nanostructures using polyoxometalates. J Mater Chem 19(1):19–33. https://doi.org/10.1039/b813303d

    Article  CAS  Google Scholar 

  21. Mitchell SG, de la Fuente JM (2012) The synergistic behavior of polyoxometalates and metal nanoparticles: from synthetic approaches to functional nanohybrid materials. J Mater Chem 22(35):18091. https://doi.org/10.1039/c2jm33128d

    Article  CAS  Google Scholar 

  22. Wang Y, Weinstock IA (2012) Polyoxometalate-decorated nanoparticles. Chem Soc Rev 41(22):7479–7496. https://doi.org/10.1039/c2cs35126a

    Article  CAS  PubMed  Google Scholar 

  23. Tang Z, Liu S, Wang E, Dong S (2000) Self-assembled monolayer of polyoxometalate on gold surfaces: quartz crystal microbalance, electrochemistry, and in-situ scanning tunneling microscopy study. Langmuir 16(11):4946–4952. https://doi.org/10.1021/la9907127

    Article  CAS  Google Scholar 

  24. Zoladek S, Rutkowska IA, Skorupska K, Palys B, Kulesza PJ (2011) Fabrication of polyoxometallate-modified gold nanoparticles and their utilization as supports for dispersed platinum in electrocatalysis. Electrochim Acta 56(28):10744–10750. https://doi.org/10.1016/j.electacta.2011.04.020

    Article  CAS  Google Scholar 

  25. Maksimov GM (1995) Advances in the synthesis of polyoxometalates and in the study of heteropolyacids. Russ Chem Rev 64(5):445–461. https://doi.org/10.1070/RC1995v064n05ABEH000159

    Article  Google Scholar 

  26. Maksimov GM, Chuvilin AL, Moroz EM, Likholobov VA, Matveev KI (2004) Preparation of colloidal solutions of noble metals stabilized by polyoxometalates and supported catalysts based on these solutions. Kinet Catal 45(6):870–878. https://doi.org/10.1007/s10975-005-0054-3

    Article  Google Scholar 

  27. Ichikawa S, Akita T, Okumura M, Haruta M, Tanaka K, Kohyama M (2003) Electron holographic 3-D nano-analysis of Au/TiO2 catalyst at interface. J Electron Microsc 52(1):21–26. https://doi.org/10.1093/jmicro/52.1.21

    Article  CAS  Google Scholar 

  28. Kielbassa S, Kinne M, Behm RJ (2004) Microstructured Au/TiO2 model catalyst systems. Langmuir 20(16):6644–6650. https://doi.org/10.1021/la0302201

    Article  CAS  PubMed  Google Scholar 

  29. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38(13):3001–3008. https://doi.org/10.1016/j.watres.2004.04.046

    Article  CAS  PubMed  Google Scholar 

  30. Willneff EA, Braun S, Rosenthal D, Bluhm H, Havecker M, Kleimenov E, Knop-Gericke A, Schlogl R, Schroeder SL (2006) Dynamic electronic structure of a Au/TiO2 catalyst under reaction conditions. J Am Chem Soc 128(37):12052–12053. https://doi.org/10.1021/ja062792o

    Article  CAS  PubMed  Google Scholar 

  31. Song H, Yu YT, Norby P (2009) Efficient complete oxidation of acetaldehyde into CO2 over Au/TiO2 core-shell nano catalyst under UV and visible light irradiation. J Nanosci Nanotechnol 9(10):5891–5897. https://doi.org/10.1166/jnn.2009.1263

    Article  CAS  PubMed  Google Scholar 

  32. Richner G, van Bokhoven JA, Neuhold YM, Makosch M, Hungerbuhler K (2011) In situ infrared monitoring of the solid/liquid catalyst interface during the three-phase hydrogenation of nitrobenzene over nanosized Au on TiO2. Phys Chem Chem Phys 13(27):12463–12471. https://doi.org/10.1039/c1cp20238c

    Article  CAS  PubMed  Google Scholar 

  33. D'Agostino C, Brett GL, Miedziak PJ, Knight DW, Hutchings GJ, Gladden LF, Mantle MD (2012) Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. Chemistry 18(45):14426–14433. https://doi.org/10.1002/chem.201201922

    Article  CAS  PubMed  Google Scholar 

  34. Gartner F, Losse S, Boddien A, Pohl MM, Denurra S, Junge H, Beller M (2012) Hydrogen evolution from water/alcohol mixtures: effective in situ generation of an active Au/TiO2 catalyst. Chemsuschem 5(3):530–533. https://doi.org/10.1002/cssc.201100281

    Article  CAS  PubMed  Google Scholar 

  35. Green IX, Tang W, Neurock M, Yates JT Jr (2012) Localized partial oxidation of acetic acid at the dual perimeter sites of the Au/TiO2 catalyst-formation of gold ketenylidene. J Am Chem Soc 134(33):13569–13572. https://doi.org/10.1021/ja305911e

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chem Commun 49(25):2551–2553. https://doi.org/10.1039/c3cc39096a

    Article  CAS  Google Scholar 

  37. Jenkins AH, Musgrave CB, Medlin JW (2019) Enhancing Au/TiO2 catalyst thermostability and coking resistance with alkyl phosphonic-acid self-assembled monolayers. ACS Appl Mater Interfaces 11(44):41289–41296. https://doi.org/10.1021/acsami.9b13170

    Article  CAS  PubMed  Google Scholar 

  38. Žunič V, Kurtjak M, Suvorov D (2016) Bifunctional bridging linker-assisted synthesis and characterization of TiO2/Au nanocomposites. J Nanopart Res 18(11):336. https://doi.org/10.1007/s11051-016-3420-3

    Article  CAS  Google Scholar 

  39. Tu LNQ, Nhan NVH, Van Dung N, An NT, Long NQ (2019) Enhanced photocatalytic performance and moisture tolerance of nano-sized Me/TiO2–zeolite Y (Me=Au, Pd) for gaseous toluene removal: activity and mechanistic investigation. J Nanopart Res 21(9):194. https://doi.org/10.1007/s11051-019-4642-y

    Article  CAS  Google Scholar 

  40. Osei Bonsu P, Lü X, Xie J, Jiang D, Chen M, Wei X (2012) Photoenhanced degradation of rhodamine blue on monometallic gold (Au) loaded brookite titania photocatalysts activated by visible light. Reac Kinet Mech Cat 107(2):487–502. https://doi.org/10.1007/s11144-012-0493-6

    Article  CAS  Google Scholar 

  41. Rojas H, Martínez JJ, Mancípe S, Borda G, Reyes P (2012) Citral hydrogenation over novel niobia and titania supported Au, Ir–Au and Ir catalysts. Reac Kinet Mech Cat 106(2):445–455. https://doi.org/10.1007/s11144-012-0446-0

    Article  CAS  Google Scholar 

  42. Lakshminarayana B, Satyanarayana G, Subrahmanyam C (2018) Bimetallic Pd-Au/TiO2 nanoparticles: an efficient and sustainable heterogeneous catalyst for rapid catalytic hydrogen transfer reduction of nitroarenes. ACS Omega 3(10):13065–13072. https://doi.org/10.1021/acsomega.8b02064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akita T, Tanaka K, Okuma K, Koyanagi T (2001) TEM and HAADF-STEM study of a Au catalyst supported on a TiO2 nano-rod. J Electron Microsc 50(6):473–477. https://doi.org/10.1093/jmicro/50.6.473

    Article  CAS  Google Scholar 

  44. Yue G, Li S, Li D, Liu J, Wang Y, Zhao Y, Wang N, Cui Z, Zhao Y (2019) Coral-like Au/TiO2 hollow nanofibers with through-holes as a high-efficient catalyst through mass transfer enhancement. Langmuir 35(14):4843–4848. https://doi.org/10.1021/acs.langmuir.9b00004

    Article  CAS  PubMed  Google Scholar 

  45. Derrouiche S, Gravejat P, Bianchi D (2004) Heats of adsorption of linear CO species adsorbed on the Au degrees and Ti+delta sites of a 1% Au/TiO2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. J Am Chem Soc 126(40):13010–13015. https://doi.org/10.1021/ja0470719

    Article  CAS  PubMed  Google Scholar 

  46. Guzman J, Gates BC (2004) Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. J Am Chem Soc 126(9):2672–2673. https://doi.org/10.1021/ja039426e

    Article  CAS  PubMed  Google Scholar 

  47. Bongiorno A, Landman U (2005) Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys Rev Lett 95(10):106102. https://doi.org/10.1103/PhysRevLett.95.106102

    Article  CAS  PubMed  Google Scholar 

  48. Yang JH, Henao JD, Raphulu MC, Wang Y, Caputo T, Groszek AJ, Kung MC, Scurrell MS, Miller JT, Kung HH (2005) Activation of Au/TiO2 catalyst for CO oxidation. J Phys Chem B 109(20):10319–10326. https://doi.org/10.1021/jp050818c

    Article  CAS  PubMed  Google Scholar 

  49. Stiehl JD, Gong J, Ojifinni RA, Kim TS, McClure SM, Mullins CB (2006) Reactivity of molecularly chemisorbed oxygen on a Au/TiO2 model catalyst. J Phys Chem B 110(41):20337–20343. https://doi.org/10.1021/jp062766c

    Article  CAS  PubMed  Google Scholar 

  50. Tseng CH, Yang TC, Wu HE, Chiang HC (2009) Catalysis of oxidation of carbon monoxide on supported gold nanoparticle. J Hazard Mater 166(2–3):686–694. https://doi.org/10.1016/j.jhazmat.2008.11.080

    Article  CAS  PubMed  Google Scholar 

  51. Widmann D, Behm RJ (2011) Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew Chem Int Ed Engl 50(43):10241–10245. https://doi.org/10.1002/anie.201102062

    Article  CAS  PubMed  Google Scholar 

  52. Green IX, Tang W, McEntee M, Neurock M, Yates JT Jr (2012) Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J Am Chem Soc 134(30):12717–12723. https://doi.org/10.1021/ja304426b

    Article  CAS  PubMed  Google Scholar 

  53. Morán-Pineda M, Castillo S, Gómez R (2002) Low temperature CO oxidation on Au/TiO2 sol-gel catalysts. Reac Kinet Catal Lett 76(2):375–381. https://doi.org/10.1023/a:1016508600318

    Article  Google Scholar 

  54. Tang H, Su Y, Zhang B, Lee AF, Isaacs MA, Wilson K, Li L, Ren Y, Huang J, Haruta M, Qiao B, Liu X, Jin C, Su D, Wang J, Zhang T (2017) Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci Adv 3(10):e1700231. https://doi.org/10.1126/sciadv.1700231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Zhang J, Zhang B, Si R, Han B, Hong F, Niu Y, Sun L, Li L, Qiao B, Sun K, Huang J, Haruta M (2020) Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-019-14241-8

    Article  CAS  Google Scholar 

  56. Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top Catal 56(11):1008–1014. https://doi.org/10.1007/s11244-013-0064-8

    Article  CAS  Google Scholar 

  57. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal Today 238:80–86. https://doi.org/10.1016/j.cattod.2014.02.056

    Article  CAS  Google Scholar 

  58. Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Shubin YV, Plyusnin PE, Mishakov IV (2017) Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation. Catal Today 293–294:73–81. https://doi.org/10.1016/j.cattod.2016.10.010

    Article  CAS  Google Scholar 

  59. Plyusnin PE, Slavinskaya EM, Kenzhin RM, Kirilovich AK, Makotchenko EV, Stonkus OA, Shubin YV, Vedyagin AA (2019) Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions. Reac Kinet Mech Cat 127(1):69–83. https://doi.org/10.1007/s11144-019-01545-5

    Article  CAS  Google Scholar 

  60. Vedyagin AA, Kenzhin RM, Tashlanov MY, Stoyanovskii VO, Plyusnin PE, Shubin YV, Mishakov IV, Kalinkin AV, Smirnov MY, Bukhtiyarov VI (2019) Synthesis and study of bimetallic Pd-Rh system supported on zirconia-doped alumina as a component of three-way catalysts. Emiss Control Sci Technol 5(4):363–377. https://doi.org/10.1007/s40825-019-00133-2

    Article  CAS  Google Scholar 

  61. Flynn CM, Stucky GD (1969) Heteropolyniobate complexes of manganese(IV) and nickel(IV). Inorg Chem 8(2):332–334. https://doi.org/10.1021/ic50072a029

    Article  CAS  Google Scholar 

  62. Kaichev VV, Popova GY, Chesalov YA, Saraev AA, Zemlyanov DY, Beloshapkin SA, Knop-Gericke A, Schlögl R, Andrushkevich TV, Bukhtiyarov VI (2014) Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J Catal 311:59–70. https://doi.org/10.1016/j.jcat.2013.10.026

    Article  CAS  Google Scholar 

  63. Radnik J, Mohr C, Claus P (2003) On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys 5(1):172–177. https://doi.org/10.1039/b207290d

    Article  CAS  Google Scholar 

  64. Maksimovskaya RI, Burtseva KG (1985) 17O and 183W NMR studies of the paratungstate anions in aqueous solutions. Polyhedron 4(9):1559–1562. https://doi.org/10.1016/s0277-5387(00)87227-7

    Article  CAS  Google Scholar 

  65. Dabbabi M, Boyer M (1976) Syntheses et proprietes d'hexa niobo(V)-tungstates(VI). J Inorg Nucl Chem 38(5):1011–1014. https://doi.org/10.1016/0022-1902(76)80018-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed within the governmental order for the Boreskov Institute of Catalysis. The TEM and XPS experiments were performed using facilities of the shared research center “National center of investigation of catalysts” at Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vedyagin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, G.M., Gerasimov, E.Y., Kenzhin, R.M. et al. CO oxidation over titania-supported gold catalysts obtained using polyoxometalate. Reac Kinet Mech Cat 132, 171–185 (2021). https://doi.org/10.1007/s11144-020-01881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01881-x

Keywords

Navigation