Skip to main content
Log in

Photoenhanced degradation of rhodamine blue on monometallic gold (Au) loaded brookite titania photocatalysts activated by visible light

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Brookite titania nanomaterials modified with gold nanoparticles (NPs) Au–TiO2 were prepared in this research. The photocatalytic activity of the prepared composite was assessed by the photodegradation of organic pollutants. Rhodamine blue was used as a model organic pollutant. The study determined the optimum loading ratio of Au/Ti, which will result in the best photodegradation efficiency. Also, the photocatalytic activity of gold loaded brookite titania nanomaterials was ascertained under visible light. The hydrothermal method was used to prepare brookite titania whiles, gold NPs were loaded on its surface by consecutive ion adsorption and photoreduction. The results revealed that the sample Au–TiO2 (Au/Ti = 2 % molar ratio) had the best photocatalytic degradation efficiency of 100 % after 2 h of irradiation under visible light and was also higher than commercial P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P (2003) Characterisation and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135

    Article  CAS  Google Scholar 

  2. Cheng B, Le Y, Yu J (2010) Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. J Hazard Mater 177:971–977

    Article  CAS  Google Scholar 

  3. Liu Y, Chen L, Hu J, Li J, Richards R (2010) TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation. J Phys Chem C 114:1641–1645

    Article  CAS  Google Scholar 

  4. Kafizas A, Kellici S, Darr JA, Parkin IP (2009) Titanium dioxide and composite metal/metal oxide titania thin films on glass: a comparative study of photocatalytic activity. J Photochem Photobiol A 204:183–190

    Article  CAS  Google Scholar 

  5. Wu Y, Zhang J, Xiao L, Chen F (2009) Preparation and characterisation of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B 88:525–532

    Article  CAS  Google Scholar 

  6. Zhu J, Xie J, Chen M, Jiang D (2010) Low temperature preparation and visible light induced photocatalytic activity of Europium doped hydrophobic anatase TiO2–SiO2 photocatalysts. J Nanosci Nanotechnol 10:1–4

    Article  Google Scholar 

  7. Addamo M, Augugliaro V, Di Paola MBA, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2008) Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2. Catal Lett 126:58–62

    Article  CAS  Google Scholar 

  8. Xie J, Xiaomeng L, Jun L, Huoming S (2009) Synthesis and photocatalytic activity of brookite titania. Pure Appl Chem 81:2407–2415

    Article  CAS  Google Scholar 

  9. Hu W, Li L, Li G, Tang C, Sun L (2009) High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Design 9:3676–3682

    Article  CAS  Google Scholar 

  10. Beltran A, Gracia L, Andres J (2006) Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J Phys Chem B 110:23417–23423

    Article  CAS  Google Scholar 

  11. Alvaro M, Cojocaru B, Ismail AA, Petrea N, Ferrer B, Harraz FA, Parvulescu VI, Garcia H (2010) Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B 99:191–197

    Article  CAS  Google Scholar 

  12. Yang JH, Henao JD, Raphulu MC, Wang YM, Caputo T, Groszek AJ, Kung MC, Scurrell MS, Miller JT, Kung HH (2005) Activation of Au/TiO2 catalyst for CO oxidation. J Phys Chem B 109:10319–10326

    Article  CAS  Google Scholar 

  13. Xie Y, Ding K, Liu Z, Tao R, Sun Z, Zhang H, An G (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131:6648–6649

    Google Scholar 

  14. Colmenares JC, Aramenda MA, Marinas A, Marinas JM, Urbano FJ (2006) Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A 306:120–127

    Article  CAS  Google Scholar 

  15. Wang X, Mitchell DRG, Kathryn P, Atanacio AJ, Caruso RA (2008) Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:3917–3926

    Article  CAS  Google Scholar 

  16. Zielinska-Jurek A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A (2011) Preparation and characterisation of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. J Appl Catal B 101:504–514

    Article  CAS  Google Scholar 

  17. Rodrıguez-Gonzalez V, Zanella R, Angel GD, Gomez R (2008) MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2–Al2O3 sol–gel prepared catalysts. J Mol Catal A 281:93–98

    Article  Google Scholar 

  18. Sangpour P, Hashemi F, Moshfegh AZ (2010) Photoenhanced degradation of methylene blue on cosputtered M: TiO2(M = Au, Ag, Cu) nanocomposite systems: a comparative study. J Phys Chem C 114:13955–13961

    Article  CAS  Google Scholar 

  19. Yu H, Wang X, Sun H, Huo M (2010) Photocatalytic degradation of Malathion in aqueous solution using an Au–Pd–TiO2 nanotube film. J Hazard Mater 184:753–758

    Article  CAS  Google Scholar 

  20. Wang Y, Li S, Xing X, Huang F, Shen Y, Xie A, Wang X, Zhang J (2011) Self-assembled 3D flowerlike hierarchical Fe3O4 @Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. Chem Eur 12:4802–4808

    Article  Google Scholar 

  21. Zhao Q, Li M, Chu J, Jiang T, Yin H (2009) Preparation, characterisation of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. J Appl Surf Sci 255:3773–3778

    Article  CAS  Google Scholar 

  22. Maicu M, Hidalgo MC, Colon G, Navio JA (2011) Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J Photochem Photobiol A 217:275–283

    Article  CAS  Google Scholar 

  23. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  24. Chih-Chieh C, Chung-Chieh C, Wen-Chia H, Shih-Kai W, Lin J (2009) Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chem Eng J 152:492–497

    Article  Google Scholar 

  25. Xie J, Xiaomeng L, Chen M, Zhao G, Song Y, Lu S (2008) The synthesis, characterisation and photocatalytic activity of V(v), Pb(II), Ag(I), Co(II)-doped Bi2O3. Dyes Pigments 77:43–47

    Article  CAS  Google Scholar 

  26. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal T 84:191–196

    Article  CAS  Google Scholar 

  27. Selvam K, Swaminathan M (2011) One-pot photocatalytic synthesis of quinaldines from nitroarenes with Au loaded TiO2 nanoparticles. Catal Commun 12:389–393

    Article  CAS  Google Scholar 

  28. Shao-Wen C, Yin Z, Barber J, Boey FYC, Loo SCJ, Xue C (2012) Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. Appl Mater Interf 4:418–423

    Article  Google Scholar 

  29. Kielbassa S, Kinne M, Behm RJ (2004) Thermal stability of Au nanoparticles in O2 and air on fully oxidized TiO2 (110) substrates at elevated pressures. An AFM/XPS study of Au/TiO2 model systems. J Phys Chem B 108:19184–19190

    Article  CAS  Google Scholar 

  30. Shin-Tae B, Shin H, Lee S, Kim DW, Jung HS, Hong KS (2012) Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution. Reac Kinet Mech Cat 106:67–81. doi:10.1007/s11144-011-0404-2

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the National Natural Science Foundation of China (21003065), Research Fund for the Doctoral Programme of Higher Education (20093227110009), China, Science and Technology Support program of Jiangsu Province (BE 2010144), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Osei Bonsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osei Bonsu, P., Lü, X., Xie, J. et al. Photoenhanced degradation of rhodamine blue on monometallic gold (Au) loaded brookite titania photocatalysts activated by visible light. Reac Kinet Mech Cat 107, 487–502 (2012). https://doi.org/10.1007/s11144-012-0493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0493-6

Keywords

Navigation