Skip to main content
Log in

Optimization of the synthesis technique of molybdenum sulfide catalysts supported on titania for the hydrodesulfurization of thiophene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present work deals with the optimization of the preparation method for the synthesis of unpromoted molybdenum catalysts supported on titania. Four methodologies have been followed: equilibrium–deposition–filtration (EDF), wet impregnation (WI), dry impregnation (DI) and controlled wet impregnation (CWI). The Mo surface density of all catalysts was 3.2 Mo atoms/nm2. The catalysts were characterized using N2 adsorption, XRD, XPS and DRS. The catalysts were evaluated in the hydrodesulfurization (HDS) of thiophene, using an atmospheric differential fixed bed reactor. EDF technique provided the most active catalyst followed by that prepared by WI and then by those prepared by DI or CWI. Although the impregnation technique does not influence the structure of the catalysts at nanoscale, a suitable choice of the impregnation technique leads to the increasing contribution of supported molybdenum clusters with small size and thus with high number of the Ti–O–Mo (Ti–S–Mo) bridges per Mo atom, stabilizing highly S-deficient structures. In order to confirm the favorable influence of titania on the catalytic performance, we have synthesized by DI a Mo catalyst supported on γ-alumina with the same loading. The relatively low activity exhibited by this catalyst was attributed to the different structure of the supported molybdenum species with respect to those formed on titania and to the lower Mo dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lai W, Xu Y, Zhao Y, Zheng J, Yi X, Fang W (2015) Reac Kinet Mech Cat 115:635–649

    Article  CAS  Google Scholar 

  2. Cao Z, Du P, Duan A, Guo R, Zhao Z, Zhang HL, Zheng P, Xu C, Chen Z (2016) Chem Eng Sci 155:141–152

    Article  CAS  Google Scholar 

  3. Nejad DM, Rahemi N, Allahyari S (2016) Reac Kinet Mech Cat. doi:10.1007/s11144-016-1093-7

    Google Scholar 

  4. Hajjar Z, Kazemeini M, Rashidi A, Bazmi M (2016) Fuel 165:468–476

    Article  CAS  Google Scholar 

  5. Wang Y, Lancelot C, Lamonier C, Richard F, Leng K, Sun Y, Rives A (2015) ChemCatChem 7:3936–3944

    Article  CAS  Google Scholar 

  6. Wang J, Fu Y, Chen H, Shen J (2015) Chem Eng J 275:89–101

    Article  CAS  Google Scholar 

  7. Zhang L, Fu W, Xiang M, Wang W, He M, Tang T (2015) Ind Eng Chem Res 54:5580–5588

    Article  CAS  Google Scholar 

  8. Oyama ST, Gott T, Zhao H, Lee YK (2009) Catal Today 143:94–107

    Article  CAS  Google Scholar 

  9. Leliveld RJ, Eijsbouts SE (2008) Catal Today 130:183–189

    Article  CAS  Google Scholar 

  10. Ng KYS, Gulari E (1985) J Catal 95:33–40

    Article  CAS  Google Scholar 

  11. Ng KYS, Gulari E (1985) J Catal 92:340–354

    Article  CAS  Google Scholar 

  12. Shimada H, Sato T, Yoshimura Y, Hiraishi J, Nishijima A (1988) J Catal 110:275–284

    Article  CAS  Google Scholar 

  13. Ramirez J, Fuentes S, Diaz G, Vrinat M, Breysse M, Lacroix M (1989) Appl Catal 52:211–224

    CAS  Google Scholar 

  14. Pratt KC, Sanders JV, Christov V (1990) J Catal 124:416–432

    Article  CAS  Google Scholar 

  15. Sakashita Y, Araki Y, Honna K, Shimada H (2000) Appl Catal A 197:247–253

    Article  CAS  Google Scholar 

  16. Araki Y, Honna K, Shimada H (2002) J Catal 207:361–370

    Article  CAS  Google Scholar 

  17. Wang D, Qian W, Ishihara A, Kabe T (2002) Appl Catal A 224:191–199

    Article  CAS  Google Scholar 

  18. Wang D, Qian W, Ishihara A, Kabe T (2002) J Catal 209:266–270

    Article  CAS  Google Scholar 

  19. Hensen EJM, de Beer VHJ, van Veen JAR, van Santen RA (2003) J Catal 215:353–357

    Article  CAS  Google Scholar 

  20. Schacht P, Hernandez G, Cedeño L, Mendoza JH, Ramirez S, Garcia L, Ancheyta J (2003) Energy Fuels 17:81–86

    Article  CAS  Google Scholar 

  21. Inoue S, Muto A, Kudou H, Ono T (2004) Appl Catal A 269:7–12

    Article  CAS  Google Scholar 

  22. Escobar J, Toledo JA, Cortes MA, Mosqueira ML, Perez V, Ferrat G, Lopez-Salinas E, Torres-Garcia E (2005) Catal Today 106:222–226

    Article  CAS  Google Scholar 

  23. Wang D, Li X, Qian EW, Ishihara A, Kabe T (2003) Appl Catal A 238:109–117

    Article  CAS  Google Scholar 

  24. Ishihara A, Dumeignil F, Wang D, Li X, Arakawa H, Qian EW, Inoue S, Muto A, Kabe T (2005) Appl Catal A 292:50–60

    Article  CAS  Google Scholar 

  25. Gulkova D, Kaluza L, Vit Z, Zdrazil M (2006) Catal Lett 112:193–196

    Article  CAS  Google Scholar 

  26. Wang D, Li W, Zhang M, Tao K (2007) Appl Catal A 317:105–112

    Article  CAS  Google Scholar 

  27. Toledo-Antonio JA, Cortes-Jacome MA, Angeles-Chavez C, Escobar J, Barrera MC, Lopez E (2009) Appl Catal B 90:213–223

    Article  CAS  Google Scholar 

  28. Cenedo L, Zanella R, Ramirez J, Mendoza H, Hermandez G, Schacht P (2004) Catal Today 98:83–89

    Article  Google Scholar 

  29. Vissenberg MJ, van der Meer Y, Hensen EJM, de Beer VHJ, van der Kraan AM, van Santen RA, van Veen JAR (2001) J Catal 198:151–163

    Article  CAS  Google Scholar 

  30. Spojakina A, Kraleva E, Jiratova K, Kocianova J, Petrov L (2002) Bulg Chem Comm 34:495–504

    CAS  Google Scholar 

  31. Kraleva E, Paneva D, Spojakina A, Mitov I, Petrov L (2005) React Kin Catal Lett 85:283–290

    Article  CAS  Google Scholar 

  32. Spojakina A, Kraleva E, Jiratova K, Petrov L (2005) Appl Catal A 288:10–17

    Article  CAS  Google Scholar 

  33. Kraleva E, Spojakina A, Jiratova K, Petrov L (2006) Catal Lett 110:203–209

    Article  CAS  Google Scholar 

  34. Wang D, Qian W, Ishihara A, Kabe T (2001) J Catal 203:322–328

    Article  CAS  Google Scholar 

  35. Baes CF Jr, Mesmer RE (1975) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  36. Panagiotou G, Petsi Th, Bourikas K, Kalampounias A, Boghosian S, Kordulis Ch, Lycourghiotis A (2010) J Phys Chem C 114:11868–11879

    Article  CAS  Google Scholar 

  37. Bourikas K, Vakros J, Fountzoula Ch, Kordulis Ch, Lycourghiotis A (2007) Catal Today 128:138–144

    Article  CAS  Google Scholar 

  38. Hamraoui K, Cristol S, Payen E, Paul JF (2007) J Phys Chem C 111:3963–3972

    Article  CAS  Google Scholar 

  39. Hamraoui K, Cristol S, Payen E, Paul JF (2009) J Mol Struct Theochem 903:73–82

    Article  CAS  Google Scholar 

  40. Tsilomelekis G, Boghosian S (2011) J Phys Chem C 115:2146–2155

    Article  CAS  Google Scholar 

  41. Tsilomelekis G, Tribalis A, Kalampounias AG, Boghosian S, Panagiotou G, Bourikas K, Kordulis Ch, Lycourghiotis A (2010) Stud Surf Sci Catal 175:613–616

    Article  CAS  Google Scholar 

  42. Kim DS, Kurusu Y, Wachs IE, Hardcastle FD, Segawa K (1989) J Catal 120:325–336

    Article  CAS  Google Scholar 

  43. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  44. Hu H, Wachs IE (1995) J Phys Chem 99:10911–10922

    Article  CAS  Google Scholar 

  45. Christodoulakis A, Heracleous E, Lemonidou AA, Boghosian S (2006) J Catal 242:16–25

    Article  CAS  Google Scholar 

  46. Oyama ST, Radhkrishman R, Seman M, Kondo JN, Asakura K (2003) J Phys Chem B 107:1845–1852

    Article  CAS  Google Scholar 

  47. Arrouvel C, Breysse M, Toulhoat H, Raybaud P (2004) J Catal 226:260–272

    Article  CAS  Google Scholar 

  48. Arrouvel C, Breysse M, Toulhoat H, Raybaud P (2005) J Catal 232:161–178

    Article  CAS  Google Scholar 

  49. Sakashita Y, Araki Y, Shimada H (2001) Appl Catal A 215:101–110

    Article  CAS  Google Scholar 

  50. Payen E, Kasztelan S, Houssenbay S, Szymansly R, Grimblot I (1989) J Phys Chem 93:6501–6506

    Article  CAS  Google Scholar 

  51. Kosta D, Arrouvel C, Breysse M, Toulhoat H, Raybaud P (2007) J Catal 246:325–343

    Article  Google Scholar 

  52. Morales-Ortuno JC, Ortega-Domínguez RA, Hernández-Hipólito P, Bokhimi X, Klimova TE (2016) Catal Today 271:127–139

    Article  CAS  Google Scholar 

  53. Platanitis P, Panagiotou GD, Bourikas K, Kordulis Ch, Fierro JLG, Lycourghiotis A (2016) J Mol Catal A 412:1–12

    Article  CAS  Google Scholar 

  54. Vakros J, Bourikas K, Kordulis Ch, Lycourghiotis A (2003) J Phys Chem B 107:1804–1813

    Article  CAS  Google Scholar 

  55. Papadopoulou Ch, Vakros J, Matralis HK, Voyiatzis GA, Kordulis Ch (2004) J Colloid Interface Sci 274:159–166

    Article  CAS  Google Scholar 

  56. Bourikas K, Kordulis Ch, Lycourghiotis A (2006) Catal Rev 48:363–444

    Article  CAS  Google Scholar 

  57. Vakros J, Lycourghiotis A, Voyiatzis GA, Siokou A, Kordulis Ch (2010) Appl Catal B 96:496–507

    Article  CAS  Google Scholar 

  58. Choudhary TV, Phillips CB (2011) Appl Catal A Gen 397:1–12

    Article  CAS  Google Scholar 

  59. Mohammad M, Hari TK, Yaakob Z, Sharma YC, Sopian K (2013) Renew Sustain Energy Rev 22:121–132

    Article  CAS  Google Scholar 

  60. Kubickova I, Kubicka D (2010) Waste Biomass Valoriz 1:293–308

    Article  CAS  Google Scholar 

  61. Kordulis Ch, Bourikas K, Gousi M, Kordouli E, Lycourghiotis A (2016) Appl Catal B 181:156–196

    Article  CAS  Google Scholar 

  62. Bezergianni S, Dimitriadis A, Meletidis G (2014) Fuel 125:129–136

    Article  CAS  Google Scholar 

  63. Al-Sabawi M, Chen J (2012) Energy Fuels 26:5373–5399

    Article  CAS  Google Scholar 

  64. Kubicka D, Horácek J, Setnicka M, Bulánek R, Zukal A, Kubicková I (2014) Appl Catal B 145:101–107

    Article  CAS  Google Scholar 

  65. Vonortas A, Papayannakos N (2014) WIREs Energy Environ 3:3–23

    Article  CAS  Google Scholar 

  66. Signorile M, Damin A, Budnyk A, Lamberti C, Puig-Molina A, Beato P, Bordiga S (2015) J Catal 328:225–235

    Article  CAS  Google Scholar 

  67. Fountzoula Ch, Spanos N, Matralis HK, Kordulis Ch (2002) Appl Catal B 35:295–304

    Article  CAS  Google Scholar 

  68. Kordulis Ch, Voliotis S, Lycourghiotis A (1982) J Less-Common Met 84:187–200

    Article  CAS  Google Scholar 

  69. Kordulis Ch, Voliotis S, Lycourghiotis A (1982) J Less-Common Met 85:275–284

    Article  CAS  Google Scholar 

  70. Bourikas K, Fountzoula Ch, Kordulis Ch (2004) Langmuir 20:10663–10669

    Article  CAS  Google Scholar 

  71. Bourikas K, Fountzoula Ch, Kordulis Ch (2004) Appl Catal B 52:145–153

    Article  CAS  Google Scholar 

  72. Tsilomelekis G, Panagiotou GD, Stathi P, Kalampounias AG, Bourikas K, Kordulis Ch, Deligiannakis Y, Boghosian S, Lycourghiotis A (2016) Phys Chem Chem Phys 18:23980–23989

    Article  CAS  Google Scholar 

  73. Chen J, Maugé F, El Fallah J, Oliviero L (2014) J Catal 320:170–179

    Article  CAS  Google Scholar 

  74. Chen J, Oliviero L, Portier X, Maugé F (2015) RSC Adv 5:81038–81044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Panagiotou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platanitis, P., Panagiotou, G.D., Bourikas, K. et al. Optimization of the synthesis technique of molybdenum sulfide catalysts supported on titania for the hydrodesulfurization of thiophene. Reac Kinet Mech Cat 120, 527–541 (2017). https://doi.org/10.1007/s11144-016-1111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1111-9

Keywords

Navigation