Skip to main content
Log in

Active Sites Evaluation of Vanadia Based Powdered and Extruded SCR Catalysts Prepared on Commercial Titania

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The active sites of powder and monolith V2O5–WO3/TiO2 catalysts prepared on commercial titania supports were studied for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) by ammonia (NH3) while varying vanadium oxide (V2O5) coverage. Four different types of commercial titania (DT-51, DT-56, G-5, and S-10) were used in this study. It was observed that the SCR activity of powder V2O5–WO3/TiO2 is highly dependent on the vanadium coverage. The catalytic activity increased with increasing V2O5 coverage and reached a maximum between one-half and one monolayer of vanadia. However, NOx conversion decreased at high V2O5 coverage. The catalysts were characterized by temperature-programmed desorption of NH3 (NH3 TPD), temperature-programmed reduction by hydrogen (H2 TPR), oxygen chemisorption, and N2 adsorption to evaluate the active sites responsible for high SCR activity. The spectroscopic studies revealed that the rapid decrease in SCR activity at higher vanadia coverage is due to the decrease in the reducibility and dispersion of vanadium species. This synthetic learning was extended to investigate the active sites in extruded monolith V2O5–WO3/TiO2 catalysts. A good correlation between redox sites and activity for powder and monolith V2O5–WO3/TiO2 catalysts was found.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Forzatti P (2001) Appl Catal A 222:221–236

    Article  CAS  Google Scholar 

  2. Bond GC, Tahir SF (1991) Appl Catal 71:1–31

    Article  CAS  Google Scholar 

  3. Bañares MA, Wachs IE (2002) J Raman Spec 33:359–380

    Article  Google Scholar 

  4. Hodjiivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61–69

    Article  Google Scholar 

  5. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  6. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A 216:179–182

    Article  CAS  Google Scholar 

  7. Waches IE, Weckhuysen BM (1997) Appl Catal A 157:67–90

    Article  Google Scholar 

  8. Fushun T, Ke Z, Fang Y, Lili Y, Bolian X, Jinheng Q, Yining F (2012) J Chin Catal 33:933–940

    Article  Google Scholar 

  9. Went GT, Leu LJ, Rosin RR, Bell AT (1992) J Catal 134:492–505

    Article  CAS  Google Scholar 

  10. Baiker A, Handy B, Nickl J, Schraml-Marth M, Wokaun A (1992) Catal Lett 14:89–99

    Article  CAS  Google Scholar 

  11. Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS (1996) J Catal 161:247–253

    Article  CAS  Google Scholar 

  12. Mutin PH, Popa AF, Vioux A, Delahay G, Coq B (2006) Appl Catal 69:49–57

    Article  CAS  Google Scholar 

  13. Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S (2006) J Catal 239:1–12

    Article  CAS  Google Scholar 

  14. Briand LE, Farneth W, Wachs IE (2000) Catal Today 62:219–229

    Article  CAS  Google Scholar 

  15. Inomata M, Miyamoto A, Murakami Y (1980) J Catal 62:140–148

    Article  CAS  Google Scholar 

  16. Odriozola JA, Heinemann H, Domerjai GA, Garcia de la Banda JF, Pereira P (1989) J Catal 119:71–182

    Article  CAS  Google Scholar 

  17. Topsøe NY, Dumesic JA, Topsøe H (1995) J Catal 151:241

    Article  Google Scholar 

  18. Zukal A, Sjiklová H, Cjejka J (2008) Langmuir 24:9837–9842

    Article  CAS  Google Scholar 

  19. Ramis G, Busca G, Bregani F, Forzatti P (1999) J Catal 187:419

    Article  Google Scholar 

  20. Kim YH, Lee HI (1999) Bull Korean Chem Soc 20:1457–1463

    CAS  Google Scholar 

  21. Kompio PGWA, Brückner A, Hipler F, Auer G, Löffler E (2012) J Catal 286:237

    Article  CAS  Google Scholar 

  22. Parekh BS, Weller SW (1977) J Catal 47:100–108

    Article  CAS  Google Scholar 

  23. Oyama ST, Went GT, Lewis KB, Bell AT, Somorjai GA (1989) J Phys Chem 93:6786–6790

    Article  CAS  Google Scholar 

  24. Ettireddy PR, Ettireddy N, Mamedov S (2007) Appl Catal B 76:123–134

    Article  CAS  Google Scholar 

  25. Tatibougt JM (1997) Appl Catal A 148:213–252

    Article  Google Scholar 

  26. Badlani M, Wachs IE (2001) Catal Lett 75:137–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Babcock & Wilcox Power Generation Group, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambareesh D. Murkute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murkute, A.D., Vanderwiel, D. Active Sites Evaluation of Vanadia Based Powdered and Extruded SCR Catalysts Prepared on Commercial Titania. Catal Lett 145, 1224–1236 (2015). https://doi.org/10.1007/s10562-015-1511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1511-x

Keywords

Navigation