Skip to main content
Log in

Modeling the kinetics of sulfidation over NiMo/Al2O3 catalyst for thiophene hydrodesulfurization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A kinetic model has been developed for the sulfidation of NiMo/Al2O3 hydrodesulfurization (HDS) catalyst, which quantitatively establishes a relationship between the HDS activity and sulfidation conditions. The model parameters were estimated by fitting a series of experimental thiophene HDS conversion data over the catalysts sulfurized under different operations. The results show that the developed model satisfactorily predicts the HDS conversion with a total average relative deviation of less than 4 %. Moreover, parametric studies were made to validate the accuracy of the model. The comparison results show that the proposed model is fairly effective in simulating the sulfidation process. It is expected that the model will be used to guide the sulfidation research of supported Mo-based catalysts and to optimize laboratory/pilot-plant sulfiding procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A, B, C :

Model parameter

ARD :

Average relative deviation, %

E a :

Activation energy of HDS reaction

E 1 :

Relative activation energy of sulfidation reaction

E 2 :

Relative activation energy of grain growth

f M :

Dispersion indicator of the active metal

k :

Rate constant of HDS reaction

k o :

Pre-exponential factor of HDS reaction

k 1 :

Rate constant of sulfidation reaction

k 2 :

Rate constant of grain growth

\(k_{10}^{'}\) :

Pre-exponential factor of sulfidation reaction

\(k_{20}^{'}\) :

Pre-exponential factor of grain growth

L :

MoS2/WS2 crystal slab length

L r :

Relative slab length (L r = L/L max)

M s :

Total content of surface active metal

M e(IV):

Number of atoms in the active surface (edges)

M t(IV):

Total number of Mo atoms in the crystal

N a :

Amount of active sites

N :

Number of Mo atoms along one edge of a MoS2 slab

n 1, n 2 :

Model parameter

R s :

Sulfidation degree

R :

Gas constant

T :

Relative sulfidation temperature (T = T s/673 K)

T s :

Sulfidation temperature

T :

Relative sulfidation time (t = t s/60 min)

t s :

Sulfidation time

x :

Conversion

References

  1. Martínez J, Ancheyta J (2014) Modeling the kinetics of parallel thermal and catalytic hydrotreating of heavy oil. Fuel 138:27–36

    Article  Google Scholar 

  2. Elfghi FM, Amin NAS (2013) Optimization of hydrodesulfurization activity in the hydrotreating process: canonical analysis and the combined application of factorial design and response surface methodology. Reac Kinet Mech Cat 108:371–390

    Article  CAS  Google Scholar 

  3. Jimenez F, Kafarov V, Nunez M (2007) Modeling of industrial reactor for hydrotreating of vacuum gas oils simultaneous hydrodesulfurization, hydrodenitrogenation and hydrode-aromatization reactions. Chem Eng J 134:200–208

    Article  CAS  Google Scholar 

  4. Cedeno-Caero L, Alvarez-Amparan MA (2014) Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzo-thiophene compounds. Reac Kinet Mech Cat 113:115–131

    Article  CAS  Google Scholar 

  5. Maes M, Trekels M, Boulhout M, Schouteden S, Vermoortele F, Alaerts L et al (2011) Selective removal of N-Heterocyclic aromatic contaminants from fuels by Lewis acidic metal-organic frameworks. Angew Chem 123:4296–4300

    Article  Google Scholar 

  6. Zacek P, Kaluza L, Karban J, Storch J, Sykora J (2014) The rearrangement of 1-methylcyclohex-1-ene during the hydrodesulfurization of FCC gasoline over supported Co(Ni)Mo/Al2O3 sulfide catalysts: the isolation and identification of branched cyclic C7 olefins. Reac Kinet Mech Cat 112:335–346

    Article  CAS  Google Scholar 

  7. Ho TC, Reyes SC (1990) Design of catalyst sulfiding procedures. Chem Eng Sci 45:2633–2638

    Article  CAS  Google Scholar 

  8. Koltai T, Galsan V, Tetenyi P (1999) Effect of pretreatment on HDS activity of supported NiW and NiMo catalysts. React Kinet Catal Lett 67:391–396

    Article  CAS  Google Scholar 

  9. Kim SI, Woo SI (1991) Effect of sulfiding temperatures on the formation of sulfides of Mo/Al2O3 and CoMo/Al2O3. Appl Catal 74:109–123

    Article  CAS  Google Scholar 

  10. Karroua M, Matralis H, Grange P, Delmon B (1995) Unsupported NiMo Catalysts. Influence of the sulfiding temperature and evolution of the unsupported NiMoS phase during reaction. Bull Soc Chim Belg 104:11–18

    Article  CAS  Google Scholar 

  11. Micic RD, Marinkovic-Neducin RP, Schay Z, Nagy I, Kiurski JS, Kiss EE (2007) Influence of the activation temperature on structural and textural properties of NiMo/Al2O3 hydrodesulfurization catalysts. React Kinet Catal Lett 91:85–92

    Article  CAS  Google Scholar 

  12. Okamoto Y, Hioka K, Arakawa K, Fujikawa T, Ebihara T, Kubota T (2009) Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts: local structure and intrinsic activity of the active sites. J Catal 268:49–59

    Article  CAS  Google Scholar 

  13. Okamoto Y, Kato A, Usman, Rinaldi N, Fujikawa T, Koshika H et al (2009) Effect of sulfidation temperature on the intrinsic activity of Co-MoS2 and Co-WS2 hydrodesulfurization catalysts. J Catal 265:216–228

    Article  CAS  Google Scholar 

  14. Houssenbay S, Kasztelan S, Toulhoat H, Bonnelle JP, Grimblot J (1989) Nature of the different nickel species in sulfided bulk and alumina-supported NiMo hydrotreating catalysts. J Phys Chem 93:7176–7180

    Article  CAS  Google Scholar 

  15. Payen E, Kasztelan S, Grimblot J (1988) In situ laser Raman spectroscopy of the sulphiding of WO3(MoO3)/γ-Al2O3 catalysts. J Mol Struct 174:71–76

    Article  CAS  Google Scholar 

  16. Candia R, Sorensen O, Villadsen J, Topsoe NY, Clausen BS, Topsoe H (1984) Effect of sulfiding temperature on activity and structures of Co-Mo/Al2O3 catalysts. ii. Bull Soc Chim Belg 93:763–774

    Article  CAS  Google Scholar 

  17. Reyes SC, Ho TC (1988) Heat effects in gas sulfiding of hydroprocessing catalysts. AIChE J 34:314–320

    Article  CAS  Google Scholar 

  18. Saih Y, Nagata M, Funamoto T, Masuyama Y, Segawa K (2005) Ultra deep hydrodesulfurization of dibenzothiophene derivatives over NiMo/TiO2-Al2O3 catalysts. Appl Catal A: Gen 295:11–22

    Article  CAS  Google Scholar 

  19. Zhang L, Karakas G, Ozkan US (1998) NiMoS/γ-Al2O3 catalysts: the nature and the aging behavior of active sites in HDN reactions. J Catal 178:457–465

    Article  CAS  Google Scholar 

  20. Leyva C, Ancheyta J, Travert A, Maugé F, Mariey L, Ramírez J, Rana MS (2012) Activity and surface properties of NiMo/SiO2–Al2O3 catalysts for hydroprocessing of heavy oils. Appl Catal A: Gen 425–426:1–12

    Article  Google Scholar 

  21. Li Q, Zhang Y, Chen S, Fang W, Yang Y (2011) Development of a novel conversion equation as a function of catalytic reaction conditions in tubular reactors. Chin J Catal 32:446–450

    Article  Google Scholar 

  22. Wu H, Duan A, Zhao Z, Qi D, Li J, Liu B et al (2014) Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent. Fuel 130:203–210

    Article  CAS  Google Scholar 

  23. Eijsbouts S, Heinerman JJL, Elzerman HJW (1993) MoS2 structures in high-activity hydrotreating catalysts. I. Semi-quantitative method for evaluation of transmission electron microscopy results. Correlations between hydrodesulfurization and hydrodenitrogenation activities and MoS2 dispersion. Appl Catal A: Gen 105:53–68

    Article  CAS  Google Scholar 

  24. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR et al (2001) The relation between morphology and hydrotreating activity for supported MoS2 particles. J Catal 199:224–235

    Article  CAS  Google Scholar 

  25. Richardson JT (1971) Sulfiding of nickel catalyst beds. J Catal 21:130

    Article  CAS  Google Scholar 

  26. Tamhankar SS, Hasatani M, Wen CY (1981) Kinetic studies on the reactions involved in the hot gas desulfurization using a regenerable iron oxide sorbent. I. Chem Eng Sci 36:1181

    Article  CAS  Google Scholar 

  27. Weng HS, Eigenberger G, Butt JB (1975) Catalyst poisoning and fixed-bed reactor dynamics. Chem Eng Sci 30:1341

    Article  CAS  Google Scholar 

  28. Zheng J, Zhao Y, Yi X, Li Q, Chen B, Fang W (2012) Deactivation kinetics of sulfur poisoning of nickel catalyst during ethylbenzene hydrogenation. CIESC J 63:3131–3137

    CAS  Google Scholar 

  29. Cumbrera FL, Sanchez-Bajo F (1995) The use of the JMAYK kinetic equation for the analysis of solid-state reactions: critical considerations and recent interpretations. Thermochim Acta 266:315–330

    Article  CAS  Google Scholar 

  30. Zuo D, Li D, Nie H, Shi Y, Lacroix M, Vrinat M (2004) Acid–base properties of NiW/Al2O3 sulfided catalysts: relationship with hydrogenation, isomerization and hydrodesulfurization reactions. J Mol Catal A: Chem 211:179–189

    Article  CAS  Google Scholar 

  31. Gutiérrez OY, Klimova T (2011) Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J Catal 281:50–62

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21473143, 21303140, 21073147), the Ministry of Science and Technology of China (2010CB226903) and the Fundamental Research Funds for the Central Universities (2012121022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, W., Xu, Y., Zhao, Y. et al. Modeling the kinetics of sulfidation over NiMo/Al2O3 catalyst for thiophene hydrodesulfurization. Reac Kinet Mech Cat 115, 635–649 (2015). https://doi.org/10.1007/s11144-015-0859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0859-7

Keywords

Navigation