Skip to main content
Log in

Utilization of Triglycerides and Related Feedstocks for Production of Clean Hydrocarbon Fuels and Petrochemicals: A Review

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Catalytic deoxygenation of triglycerides and related feedstocks for production of biofuels is reviewed in this paper. Green diesel, triglyceride-based hydrocarbons in diesel boiling range, is an attractive alternative to biodiesel—a product of transesterification of vegetable oils, particularly due to its superior fuel properties and full compatibility with current diesel fuels. Two basic approaches to production of green diesel—(i) hydrodeoxygenation of triglycerides and related compounds over metal sulfide catalysts and (ii) deoxygenation over supported noble metal catalysts are thoroughly discussed from the point of view of reaction conditions, catalyst composition and reaction pathways and products. Furthermore, catalytic cracking of triglycerides and related feedstocks over microporous and mesoporous catalysts is reviewed as well. It constitutes an interesting alternative to deoxygenation using hydrotreating and noble metal catalysts as it does not consume hydrogen. It provides a wide spectrum of products reaching from olefins to green gasoline and diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 (2010)

    Article  Google Scholar 

  2. Demirbas, A.: Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33, 1–18 (2007)

    Article  Google Scholar 

  3. Schaub, G.: Synthetic fuels and biofuels for the transportation sector—principles and perspectives. Erdoel Erdgas Kohle 122, 34–38 (2006)

    Google Scholar 

  4. Schaub, G., Vetter, A.: Biokraftstoffe–Eine Übersicht. Chem. Ing. Tech. 79, 569–578 (2005)

    Article  Google Scholar 

  5. European Biofuels Technology Plattform: Strategic Research Agenda & Strategy Deployment Document. CPL Press (2008). www.biofuelstp.eu

  6. Anon: Sustainable Biofuels: Prospects and Challenges. The Royal Society, London (2008). http://royalsociety.org/sustainable-biofuels-prospects-and-challenges/. Accessed 2 Aug 2010

  7. Demirbas, A.: Biofuels—Securing the Planet’s Future Energy Needs. Springer-Verlag London Limited, London (2009)

    Google Scholar 

  8. Lüke, H.W.: BTL fuels—a promising option for the future. Erdol Erdgas Kohle 121, 3–5 (2005)

    Google Scholar 

  9. Van Gerpen, J.H., Peterson C.L., Goering C.E.: Biodiesel: an alternative fuel for compression ignition engines. ASAE distinguished lecture no. 31, pp 1–22 (2007)

  10. Kubička, D.: Future refining catalysis—introduction of biomass feedstocks. Collect. Czech. Chem. Commun. 73, 1015–1044 (2008)

    Article  Google Scholar 

  11. The European standards organization (CEN): European fuel standards—EN 590 (diesel), EN 14 214 (biodiesel). European Committee for Standardization (CEN), Brussels 2008 (EN14214) 2004 (EN590)

  12. Ma, F., Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999)

    Article  Google Scholar 

  13. Meher, L.C., Sagar, D.V., Naik, S.N.: Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268 (2006)

    Article  Google Scholar 

  14. Knothe, G., Krahl, J., van Gerpen, J.: The Biodiesel Handbook. AOCS Press, Champaign (2005)

    Book  Google Scholar 

  15. Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J.A.: New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today 106, 190–192 (2005)

    Article  Google Scholar 

  16. European Automobile Manufacturers Association (ACEA), Alliance of Automobile Manufacturers (AAM), Engine Manufacturers Association (EMA), Japan Automobile Manufacturers Association (JAMA): Worldwide Fuel Charter, 4th edn. (2006). http://www.jama.or.jp/wwfc/pdf/WWFC_Sep2006_Brochure.pdf/ . Accessed 2 Aug 2010

  17. Laurent, E., Delmon, B.: Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes. Appl. Catal. A 109, 77–96 (1994)

    Article  Google Scholar 

  18. Kubička, D., Kaluža, L.: Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl. Catal. A 372, 199–208 (2010)

    Article  Google Scholar 

  19. Huber, G.W., O’Connor, P., Corma, A.: Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A 329, 120–129 (2007)

    Article  Google Scholar 

  20. Jakkula, J., Niemi, V., Nikkonen, J., Purola, V.-M., Myllyoja, J., Aalto, P., Lehtonen, J., Alopaeus, V.: Process for producing hydrocarbon component of biological origin. United States Patent, US 7,232,935 (2007)

  21. Maula, H.: Neste commissions second NExBTL plant. http://www.biodieselmagazine.com/article.jsp?article_id=3632 (2009). Accessed 5 Feb 2010

  22. H-Bio process. http://www2.petrobras.com.br/tecnologia/ing/hbio.asp (2010). Accessed 5 Feb 2010

  23. Gross, S.: UOP and Italy’s ENI s.p.a. announce plans for facility to produce diesel fuel from vegetable oil (2007). http://www.uop.com/pr/releases/PR.EniEcofiningFacility.pdf. Accessed 5 Feb 2010

  24. Craig, W.K., Soveran, D.W.: Production of hydrocarbons with relatively high cetane rating. United States Patent, US 4,992,605 (1991)

  25. Pinho, A.R., Silva, M., Silva Neto, A.P., Cabral, J.A.R.: Catalytic cracking process for the production of diesel from vegetable oils. United States Patent, US 7,540,952 B2 (2009)

  26. Petri, J.A., Marker, T.L.: Production of diesel fuel from biorenewable feedstocks. United States Patent, US 7,511,181 B2 (2009)

  27. The EU biodiesel industry—statistics. http://www.ebb-eu.org/stats.php (2010). Accessed 25 Feb 2010

  28. Šimáček, P., Kubička, D., Šebor, G., Pospíšil, M.: Fuel properties of hydroprocessed rapeseed oil. Fuel 89, 611–615 (2010)

    Article  Google Scholar 

  29. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)

    Article  Google Scholar 

  30. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  Google Scholar 

  31. Mäki-Arvela, P., Holmbom, B., Salmi, T., Murzin, D.Yu.: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal. Rev. Sci. Eng. 49, 197–340 (2007)

    Article  Google Scholar 

  32. Gallezot, P.: Catalytic routes from renewables to fine chemicals. Catal. Today 121, 76–91 (2007)

    Article  Google Scholar 

  33. Furimsky, E.: Catalytic hydrodeoxygenation. Appl. Catal. A 199, 147–190 (2000)

    Article  Google Scholar 

  34. Lestari, S., Mäki-Arvela, P., Beltramini, J., Max Lu, G.Q., Murzin, D.Yu.: Transforming triglycerides and fatty acids into biofuels. ChemSusChem 2, 1109–1119 (2009)

    Article  Google Scholar 

  35. Rigutto, M.S., van Veen, R., Huve, L.: Zeolites in hydrocarbon processing. Stud. Surf. Sci. Catal. 168, 855–913 (2007)

    Article  Google Scholar 

  36. Corma, A., Martinez, A.: Zeolites in refining and petrochemistry. Stud. Surf. Sci. Catal. 157, 337–366 (2005)

    Article  Google Scholar 

  37. Maier, W.F., Roth, W., Thies, I., Rague Schleyer, P.v.: Gas phase decarboxylation of carboxylic acids. Chem. Ber. 115, 808–812 (1982)

    Article  Google Scholar 

  38. Kubičková, I., Snåre, M., Eränen, K., Mäki-Arvela, P., Murzin, D.Yu.: Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal. Today 106, 197–200 (2005)

    Article  Google Scholar 

  39. Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., Murzin, D.Yu.: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Eng. Chem. Res. 45, 5708–5715 (2006)

    Article  Google Scholar 

  40. Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., Wärnå, J., Murzin, D.Yu.: Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation. Chem. Eng. J. 134, 29–34 (2007)

    Article  Google Scholar 

  41. Mäki-Arvela, P., Kubičková, I., Snåre, M., Eränen, K., Murzin, D.Yu.: Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21, 30–41 (2007)

    Article  Google Scholar 

  42. Lestari, S., Simakova, I., Tokarev, A., Mäki-Arvela, P., Eränen, K., Murzin, D.Yu.: Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal. Lett. 122, 247–251 (2008)

    Article  Google Scholar 

  43. Snåre, M., Kubičková, I., Mäki-Arvela, P., Chichova, D., Eränen, K., Murzin, D.Yu.: Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87, 933–945 (2008)

    Article  Google Scholar 

  44. Simakova, I., Simakova, O., Romanenko, A.V., Murzin, D.Yu.: Hydrogenation of vegetable oils over Pd on nanocomposite carbon catalysts. Ind. Eng. Chem. Res. 47, 7219–7225 (2008)

    Article  Google Scholar 

  45. Lestari, S., Mäki-Arvela, P., Eränen, K., Beltramini, J., Max Lu, G.Q., Murzin, D.Yu.: Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts. Catal. Lett. 130, 48–51 (2009)

    Article  Google Scholar 

  46. Simakova, I., Simakova, O., Mäki-Arvela, P., Simakov, A., Estrada, M., Murzin, D.Yu.: Deoxygenation of palmitic and stearic acid over supported Pd catalysts: effect of metal dispersion. Appl. Catal. A 355, 100–108 (2009)

    Article  Google Scholar 

  47. Murzin, D.Yu., Kubičková, I., Snåre, M., Mäki-Arvela, P., Myllyoja, J.: Method for manufacture of hydrocarbons. United States Patent, US 7,491,858 (2009)

  48. Murzin, D.Yu., Kubičková, I., Snåre, M., Mäki-Arvela, P., Myllyoja, J.: Method for the manufacture of hydrocarbons. PCT International Application WO 2006/075057 A2 (2006)

  49. Do, P.T., Chiappero, M., Lobban, L.L., Resasco, D.E.: Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catal. Lett. 130, 9–18 (2009)

    Article  Google Scholar 

  50. Boda, L., Onyestyák, G., Solt, H., Lónyi, F., Valyon, J., Thernesz, A.: Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Appl. Catal. A 374, 158–169 (2010)

    Article  Google Scholar 

  51. Immer, J.G., Kelly, M.J., Lamb, H.H.: Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl. Catal. A 375, 134–139 (2010)

    Article  Google Scholar 

  52. Lestari, S., Mäki-Arvela, P., Bernas, H., Simakova, O., Sjöholm, R., Beltramini, J., Max Lu, G.Q., Myllyoja, J., Simakova, I., Murzin, D.Yu.: Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy Fuel 23, 3842–3845 (2009)

    Article  Google Scholar 

  53. Colson, A.: Formation of ethylene hydrocarbon from esters. C. R. Acad. Sci. Ser. IIc Chim. 147, 1054–1057 (1999)

    Google Scholar 

  54. Davis, J.L., Barteau, M.A.: Hydrogen bonding in carboxylic acid adlayers on Pd(111): evidence for catemer formation. Langmuir 5, 1299–1309 (1989)

    Article  Google Scholar 

  55. Kloprogge, J.T., Duong, L.V., Frost, R.L.: A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environ. Geol. 47, 967–981 (2005)

    Article  Google Scholar 

  56. Simakova, I., Simakova, O., Mäki-Arvela, P., Murzin, D.Yu.: Decarboxylation of fatty acids over Pd supported on mesoporous carbon. Catal. Today 150, 28–31 (2010)

    Article  Google Scholar 

  57. Topsoe, H., Clausen, B.S., Masoth, F.E.: Hydrotreating Catalysis. Springer-Verlag, Berlin (1996)

    Google Scholar 

  58. Weisser, O., Landa, S.: Sulphide Catalysts, Their Properties and Applications. Pergamon, Oxford (1973)

    Google Scholar 

  59. Şenol, O.I., Viljava, T.R., Krause, A.O.I.: Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today 100, 331–335 (2005)

    Article  Google Scholar 

  60. Šimáček, P., Kubička, D., Šebor, G., Pospíšil, M.: Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel 88, 456–460 (2009)

    Article  Google Scholar 

  61. Elliott, D.C.: Historical developments in hydroprocessing bio-oils. Energy Fuel 21, 1792–1815 (2007)

    Article  Google Scholar 

  62. Bridgwater, A.V.: Catalysis in thermal biomass conversion. Appl. Catal. A 116, 5–47 (1994)

    Article  Google Scholar 

  63. Donnis, B., Egeberg, R.G., Blom, P., Knudsen, K.G.: Hydroprocessing of bio-oils and oxygenates to hydrocarbons. understanding the reaction routes. Top. Catal. 52, 229–240 (2009)

    Article  Google Scholar 

  64. Şenol, O.I., Viljava, T.R., Krause, A.O.I.: Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts. Appl. Catal. A 326, 236–244 (2007)

    Article  Google Scholar 

  65. Ryymin, E.M., Honkela, M.L., Viljava, T.R., Krause, A.O.I.: Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al2O3 catalyst. Appl. Catal. A 358, 42–48 (2009)

    Article  Google Scholar 

  66. Rocha Filho, G.N.d., Brodzki, D., Djega-Mariadassou, G.: Formation of alkanes alkylcycloalkanes and alkylbenzenes during catalytic hydrocracking of vegetable oils. Fuel 72, 543–549 (1993)

    Article  Google Scholar 

  67. Kubička, D., Bejblová, M., Vlk, J.: Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts. Top. Catal. 53, 168–178 (2010)

    Article  Google Scholar 

  68. Smejkal, Q., Smejkalová, L., Kubička, D.: Thermodynamic balance in reaction system of total vegetable oil hydrogenation. Chem. Eng. J. 146, 155–160 (2009)

    Google Scholar 

  69. Gusmão, J., Brodzki, D., Djega-Mariadassou, G., Frety, R.: Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/SiO2 and sulphided Ni-Mo/γ-Al2O3. Catal. Today 5, 533–544 (1989)

    Article  Google Scholar 

  70. Landa, S., Andrzejak, A., Weisser, O.: Über die Eigenschaften von Sulfidkatalysatoren XIV. Zur Hydrierung von Säuren. Collect. Czech. Chem. Commun. 27, 979–986 (1962)

    Google Scholar 

  71. Thakur, D.S., Delmon, B.: The role of group VIII metal promoter in MoS2 and WS2 hydrotreating catalysts: I. ESR studies of CoMo, NiMo, and NiW catalysts. J. Catal. 91, 308–317 (1985)

    Article  Google Scholar 

  72. Zakharov, I.I., Startsev, A.N., Zhidomirov, G.M.: Quantum chemical study of the electronic structure of the Ni/MoS2 hydrodesulfurization catalysts. J. Mol. Catal. A 119, 437–447 (1997)

    Article  Google Scholar 

  73. Yang, Y.Q., Tye, C.T., Smith, K.J.: Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols. Catal. Commun. 9, 1364–1368 (2008)

    Article  Google Scholar 

  74. Kubička, D., Šimáček, P., Žilková, N.: Transformation of vegetable oils into hydrocarbons over organized-mesoporous-alumina-supported CoMo catalysts. Top. Catal. 52, 161–168 (2009)

    Article  Google Scholar 

  75. Čejka, J.: Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl. Catal. A 254, 327–338 (2003)

    Article  Google Scholar 

  76. Čejka, J., Mintova, S.: Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. Sci. Eng. 49, 457–509 (2007)

    Google Scholar 

  77. Čejka, J., Žilková, N., Kaluža, L., Zdražil, M.: Mesoporous alumina as a support for hydrodesulfurization catalysts. Stud. Surf. Sci. Catal. 141, 243–250 (2002)

    Article  Google Scholar 

  78. Kaluža, L., Gulková, D., Šolcová, O., Žilková, N., Čejka, J.: Hydrotreating catalysts supported on organized mesoporous alumina: optimization of Mo deposition and promotional effects of Co and Ni. Appl. Catal. A 351, 93–101 (2008)

    Article  Google Scholar 

  79. Kubička, D., Horáček, J., Kaluža, L.: Catalytic Transformation of Triglycerides: Influence of Catalyst and Feedstock Compositions. Europacat-IX, Salamanca (2009)

    Google Scholar 

  80. Sebos, I., Matsoukas, A., Apostolopoulos, V., Papayannakos, N.: Catalytic hydroprocessing of cottonseed oil in petroleum diesel mixtures for production of renewable diesel. Fuel 88, 145–149 (2009)

    Article  Google Scholar 

  81. Šimáček, P., Kubička, D.: Hydrocracking of petroleum vacuum distillate containing rapeseed oil: evaluation of diesel fuel. Fuel 89, 1508–1513 (2010).

    Article  Google Scholar 

  82. Holmgren, J., Gosling, C., Couch, K., Kalnes, T., Marker, T., McCall, M., Marinangeli, R.: Refining biofeedstock innovations. Pet. Technol. Q. 3, 119–125 (2007)

    Google Scholar 

  83. Holmgren, J., Gosling, C., Marinangeli, R., Marker, T., Faraci, G., Perego, C.: New developments in renewable fuels offer more choices. Hydrocarb. Process. 9, 67–71 (2007)

    Google Scholar 

  84. Laurent, E., Delmon, B.: Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. II. Influence of water, ammonia and hydrogen sulfide. Appl. Catal. 109, 97–115 (1994)

    Article  Google Scholar 

  85. Şenol, O.İ., Viljava, T.-R., Krause, A.O.I.: Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water. Catal. Today 106, 186–189 (2005)

    Article  Google Scholar 

  86. Şenol, O.İ., Ryymin, E.-M., Viljava, T.-R., Krause, A.O.I.: Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts. J. Mol. Catal. A 277, 107–112 (2007)

    Article  Google Scholar 

  87. Degnan, T.F.: Applications of zeolites in petroleum refining. Top. Catal. 13, 349–356 (2000)

    Article  Google Scholar 

  88. Di Renzo, F., Fajula, F.: Introduction to molecular sieves: trends of evolution of the zeolite community. Stud. Surf. Sci. Catal. 157, 1–12 (2005)

    Article  Google Scholar 

  89. Twaiq, F.A., Zabidi, N.A.M., Bhatia, S.: Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts. Ind. Eng. Chem. Res. 38, 3230–3237 (1999)

    Article  Google Scholar 

  90. Adjaye, J.D., Katikaneni, S.P.R., Bakhshi, N.N.: Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Process. Technol. 48, 115–143 (1996)

    Article  Google Scholar 

  91. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N.: Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts. Can. J. Chem. Eng. 73, 484–497 (1995)

    Article  Google Scholar 

  92. Twaiq, F.A., Zabidi, N.A.M., Bhatia, S.: Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous Mesoporous Mater. 64, 95–107 (2003)

    Article  Google Scholar 

  93. Ooi, Y.-S., Zakaria, R., Mohamed, A.R., Bhatia, S.: Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts. Energy Fuel 19, 736–743 (2005)

    Article  Google Scholar 

  94. Anjos, J.R.S., Gonzales, W.A., Lam, Y.L., Frety, R.: Catalytic decomposition of vegetable oil. Appl. Catal. A 5, 299–308 (1983)

    Article  Google Scholar 

  95. Leung, A., Boocock, D.G.B., Konar, S.K.: Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina. Energy Fuels 9, 913–920 (1995)

    Article  Google Scholar 

  96. Idem, R.O., Katikaneni, S.P.R., Bakhshi, N.N.: Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process. Technol. 51, 101–125 (1997)

    Article  Google Scholar 

  97. Yarlagadda, P.S., Yaollang, H., Bakhshi, N.N.: Effect of hydrothermal treatment of HZSM-5 catalyst on its performance for the conversion of canola and mustard oils to hydrocarbons. Ind. Eng. Chem. Prod. Res. Dev. 25, 251–257 (1988)

    Article  Google Scholar 

  98. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N.: Studies on the catalytic conversion of canola oil to hydrocarbons: influence of hybrid catalysts and steam. Energy Fuel 9, 599–609 (1995)

    Article  Google Scholar 

  99. Katikaneni, S.P.R., Adjaye, J.D., Idem, R.O., Bakhshi, N.N.: Catalytic conversion of canola oil over potassium-impregnated HZSM-5 catalysts: C2–C4 olefin production and model reaction studies. Ind. Eng. Chem. Res. 35, 3332–3346 (1996)

    Article  Google Scholar 

  100. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N.: Conversion of canola oil to various hydrocarbons over Pt/HZSM-5 bifunctional catalyst. Can. J. Chem. Eng. 75, 391–401 (1997)

    Article  Google Scholar 

  101. Katikaneni, S.P.R., Adjaye, J.D., Idem, R.O., Bakhshi, N.N.: Performance studies of various cracking catalysts in the conversion of canola oil to fuels and chemicals in a fluidized-bed reactor. JAOCS 75, 381–391 (1998)

    Article  Google Scholar 

  102. Twaiq, F.A., Mohamad, A.R., Bhatia, S.: Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Process. Technol. 85, 1283–1300 (2004)

    Article  Google Scholar 

  103. Ooi, Y.-S., Zakaria, R., Mohamed, A.R., Bhatia, S.: Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel. Biomass Bioenergy 27, 477–488 (2004)

    Article  Google Scholar 

  104. Dandik, L., Aksoy, H.A., Erdem-Senatalar, A.: Catalytic conversion of used oil to hydrocarbon fuels in a fractionating pyrolysis reactor. Energy Fuel 12, 1148–1152 (1998)

    Article  Google Scholar 

  105. Twaiq, F.A., Zabidi, N.A.M., Mohamad, A.R., Bhatia, S.: Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels. Fuel Process. Technol. 84, 105–120 (2003)

    Article  Google Scholar 

  106. Mbaraka, I.K., Shanks, B.H.: Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. JAOCS 83, 79–91 (2006)

    Article  Google Scholar 

  107. Ooi, Y.-S., Zakaria, R., Mohamed, A.R., Bhatia, S.: Catalytic cracking of used palm oil and palm oil fatty acids mixture for the production of liquid fuel: kinetic modeling. Energy Fuel 18, 1555–1561 (2004)

    Article  Google Scholar 

  108. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N.: Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils. Energy Fuel 9, 1065–1078 (1995)

    Article  Google Scholar 

  109. Charusiri, W., Vitidsant, T.: Kinetic study of used vegetable oil to liquid fuels over sulfated zirkonia. Energy Fuel 19, 1783–1789 (2005)

    Article  Google Scholar 

  110. Charusiri, W., Yongchareon, W., Vitidsant, T.: Conversion of used vegetable oils to liquid fuels and chemicals over HZSM-5, sulfated zirconia and hybrid catalysts. Korean J. Chem. Eng. 23, 349–355 (2006)

    Article  Google Scholar 

  111. Danuthai, T., Jongpatiwut, S., Rirksomboon, T., Osman, S., Resasco, D.E.: Conversion of methylesters to hydrocarbons over an H-ZSM-5 zeolite catalyst. Appl. Catal. A 361, 99–105 (2009)

    Article  Google Scholar 

  112. Danuthai, T., Jongpatiwut, S., Rirksomboon, T., Osman, S., Resasco, D.E.: Conversion of methylesters to hydrocarbons over Zn-modified H-ZSM-5 zeolite catalyst. Catal. Lett. 132, 197–204 (2009)

    Article  Google Scholar 

  113. Sooknoi, T., Danuthai, T., Lobban, L.L., Mallinson, R.G., Resasco, D.E.: Deoxygenation of methylesters over CsNaX. J. Catal. 258, 199–209 (2008)

    Article  Google Scholar 

  114. Prokešová, P., Mintova, S., Čejka, J.: Preparation of nanosized micro/mesoporous composites. Mater. Sci. Eng. C 23, 1001–1005 (2003)

    Article  Google Scholar 

  115. Corma, A., Huber, G.W., Sauvanaud, L., O’Connor, P.: Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal. 247, 307–327 (2007)

    Article  Google Scholar 

  116. Bormann, K., Tilgner, H., Moll, H.J.: Rape seed oil as a feed component for the catalytic cracking process. Erdol Erdgas Kohle 109, 172–176 (1993)

    Google Scholar 

  117. Bormann, K., Tilgner, H.: On the influence of rape seed oil triglycerides on the catalytic cracking of petroleum distillate. Erdol Erdgas Kohle 110, 75–77 (1994)

    Google Scholar 

  118. Stadlbauer, E.A., Altensen, R., Bojanowski, S., Donnevert, S., Fiedler, A., Hossain, S., Rossmanith, J., Schilling, G.: Production of hydrocarbons from animal fat by thermocatalytic cracking. Erdol Erdgas Kohle 122, 64–69 (2006)

    Google Scholar 

  119. Benson, T.J., Hernandez, R., French, W.T., Alley, E.G., Holmes, W.E.: Elucidation of the catalytic cracking pathway for unsaturated mono-, di-, and triacylglycerides on solid acid catalysts. J. Mol. Catal. A 303, 117–123 (2009)

    Article  Google Scholar 

  120. Vonghia, E., Boocock, D.G.B., Konar, S.K., Leung, A.: Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina. Energy Fuel 9, 1090–1096 (1995)

    Article  Google Scholar 

  121. Schmidt, S.: Albemarle to supply catalysts for NExBTL plant (2008). http://www.biomassmagazine.com/article.jsp?article_id=1862. Accessed 5 Feb 2010

Download references

Acknowledgments

The financial support from the Czech Science Foundation (GAČR, P106/10/1733) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kubička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubičková, I., Kubička, D. Utilization of Triglycerides and Related Feedstocks for Production of Clean Hydrocarbon Fuels and Petrochemicals: A Review. Waste Biomass Valor 1, 293–308 (2010). https://doi.org/10.1007/s12649-010-9032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9032-8

Keywords

Navigation