Skip to main content
Log in

Quantifying the information distribution of quantum information masking

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum information masking encodes an arbitrary quantum state into a multipartite system such that the original information of input states is completely unknown to local subsystems. In this work, we investigate the quantitative distribution of quantum information masking. We regard quantum information maskers as quantum broadcasting channels and propose the Holevo’s quantity as a measure of the information carried by local subsystems. Based on the theory of quantum channels, we first give necessary and sufficient conditions for the existence of perfect quantum information masking. Then, we investigate information recovery from the union of local subsystems. We find a close connection between quantum information masking and codes for quantum erasing channels, by which the no-masking theorem is rediscovered from the point of view of information transmission. Finally, we discuss the storage behavior of quantum information and propose that quantum information can reside in the correlations of subsystems in a redundant way. Our work deepens the understanding of the way that quantum information resides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were generated or analyzed in this study.

References

  1. Nielsen, M.A., Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

  2. Wilde, M.M.: Quantum Information Theory, 2nd edn. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316809976

  3. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  MATH  Google Scholar 

  4. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982). https://doi.org/10.1016/0375-9601(82)90084-6

    Article  ADS  Google Scholar 

  5. Wang, M., Cai, Q.: Duplicating classical bits with universal quantum cloning machine. Sci. China Phys. Mech. Astron. 62(3), 1 (2018). https://doi.org/10.1007/s11433-018-9296-3

    Article  ADS  Google Scholar 

  6. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404(6774), 164–5 (2000). https://doi.org/10.1038/404130b0

    Article  ADS  Google Scholar 

  7. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007). https://doi.org/10.1103/PhysRevLett.98.080502

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Samal, J.R., Pati, A.K., Kumar, A.: Experimental test of the quantum no-hiding theorem. Phys. Rev. Lett. 106, 080401 (2011). https://doi.org/10.1103/PhysRevLett.106.080401

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  10. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1(3), 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Liu, B.-H., Li, C.-F., Guo, G.-C.: Advances in quantum dense coding. Adv. Quant. Technol. 2(5–6), 1900011 (2019). https://doi.org/10.1002/qute.201900011

    Article  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 1, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MATH  Google Scholar 

  14. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997). https://doi.org/10.1038/37539

    Article  ADS  MATH  Google Scholar 

  15. Modi, K., Pati, A.K., Sen, A., Sen, U.: Masking quantum information is impossible. Phys. Rev. Lett. 120, 230501 (2018). https://doi.org/10.1103/PhysRevLett.120.230501

    Article  ADS  MathSciNet  Google Scholar 

  16. Li, M.-S., Wang, Y.-L.: Masking quantum information in multipartite scenario. Phys. Rev. A 98, 062306 (2018). https://doi.org/10.1103/PhysRevA.98.062306

    Article  ADS  Google Scholar 

  17. Li, B., Jiang, S.-H., Liang, X.-B., Li-Jost, X., Fan, H., Fei, S.-M.: Deterministic versus probabilistic quantum information masking. Phys. Rev. A 99, 052343 (2019). https://doi.org/10.1103/PhysRevA.99.052343

    Article  ADS  MathSciNet  Google Scholar 

  18. Li, M.-S., Modi, K.: Probabilistic and approximate masking of quantum information. Phys. Rev. A 102, 022418 (2020). https://doi.org/10.1103/PhysRevA.102.022418

    Article  ADS  MathSciNet  Google Scholar 

  19. Shang, W.-M., Zhang, F.-L., Zhou, J., Meng, H.-X., Chen, J.-L.: Qubit masking in multipartite qubit system. Modern Phys. Lett. A (2021). https://doi.org/10.1142/S021773232150156X

  20. Du, Y., Guo, Z., Cao, H., Han, K., Yang, C.: Masking quantum information encoded in pure and mixed states. Int. J. Theor. Phys. 60(7), 2380–2399 (2021). https://doi.org/10.1007/s10773-020-04542-w

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, B.-Z., Fei, S.-M., Li-Jost, X.: Quantum information masking of Hadamard sets. Quantum Inf. Process. 20(10), 324 (2021). https://doi.org/10.1007/s11128-021-03253-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Liu, Z.-H., Liang, X.-B., Sun, K., Li, Q., Meng, Y., Yang, M., Li, B., Chen, J.-L., Xu, J.-S., Li, C.-F., Guo, G.-C.: Photonic implementation of quantum information masking. Phys. Rev. Lett. 126, 170505 (2021). https://doi.org/10.1103/PhysRevLett.126.170505

    Article  ADS  Google Scholar 

  23. Zhang, R.-Q., Hou, Z., Li, Z., Zhu, H., Xiang, G.-Y., Li, C.-F., Guo, G.-C.: Experimental masking of real quantum states. Phys. Rev. Appl. 16, 024052 (2021). https://doi.org/10.1103/PhysRevApplied.16.024052

    Article  ADS  Google Scholar 

  24. Shi, F., Li, M.-S., Chen, L., Zhang, X.: \(k\)-uniform quantum information masking. Phys. Rev. A 104, 032601 (2021). https://doi.org/10.1103/PhysRevA.104.032601

    Article  ADS  MathSciNet  Google Scholar 

  25. Han, K.Y., Guo, Z.H., Cao, H.X., Du, Y.X., Yang, C.: Quantum multipartite maskers vs. quantum error-correcting codes. Europhys. Lett. 131(3), 30005 (2020). https://doi.org/10.1209/0295-5075/131/30005

    Article  ADS  Google Scholar 

  26. Lie, S.H., Choi, S., Jeong, H.: Min-entropy as a resource for one-shot private state transfer, quantum masking, and state transition. Phys. Rev. A 103, 042421 (2021). https://doi.org/10.1103/PhysRevA.103.042421

    Article  ADS  MathSciNet  Google Scholar 

  27. Lie, S.H., Kwon, H., Kim, M.S., Jeong, H.: Quantum one-time tables for unconditionally secure qubit-commitment. Quantum 5, 405 (2021). https://doi.org/10.22331/q-2021-03-10-405

  28. Bai, C.-M., Zhang, S., Liu, L.: Quantum secret sharing based on quantum information masking. Quantum Inf. Process. 21(11), 377 (2022). https://doi.org/10.1007/s11128-022-03723-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lv, Q.-Q., Liang, J.-M., Wang, Z.-X., Fei, S.-M.: Quantum information masking in non-Hermitian systems and robustness. Laser Phys. Lett. 19(4), 045203 (2022). https://doi.org/10.1088/1612-202X/ac52b1

    Article  ADS  Google Scholar 

  30. Hu, M., Chen, L.: Genuine entanglement, distillability and quantum information masking under noise. Quantum Inf. Process. 21(5), 162 (2022). https://doi.org/10.1007/s11128-022-03497-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Shen, Y., Zhang, F.-L., Chen, Y.-Z., Zhou, C.-C.: Masking quantum information in the Kitaev Abelian Anyons. Physica A 612, 128495 (2023). https://doi.org/10.1016/j.physa.2023.128495

    Article  MathSciNet  MATH  Google Scholar 

  32. Bužek, V., Hillery, M.: Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996). https://doi.org/10.1103/PhysRevA.54.1844

    Article  ADS  MathSciNet  Google Scholar 

  33. Scarani, V., Iblisdir, S., Gisin, N., Acín, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005). https://doi.org/10.1103/RevModPhys.77.1225

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fan, H., Wang, Y.-N., Jing, L., Yue, J.-D., Shi, H.-D., Zhang, Y.-L., Mu, L.-Z.: Quantum cloning machines and the applications. Phys. Rep. 544(3), 241–322 (2014). https://doi.org/10.1016/j.physrep.2014.06.004

    Article  ADS  MathSciNet  Google Scholar 

  35. Wang, M.-H., Cai, Q.-Y.: High-fidelity quantum cloning of two nonorthogonal quantum states via weak measurements. Phys. Rev. A 99, 012324 (2019). https://doi.org/10.1103/PhysRevA.99.012324

    Article  ADS  Google Scholar 

  36. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997). https://doi.org/10.1103/PhysRevLett.78.3414

    Article  ADS  Google Scholar 

  37. Kent, A.: Unconditionally secure bit commitment. Phys. Rev. Lett. 83, 1447–1450 (1999). https://doi.org/10.1103/PhysRevLett.83.1447

    Article  ADS  Google Scholar 

  38. Danan, A., Vaidman, L.: Practical quantum bit commitment protocol. Quantum Inf. Process. 11(3), 769–775 (2012). https://doi.org/10.1007/s11128-011-0284-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Reports on progress in physics. Phys. Soc. (Great Br.) 76, 076001 (2013)

  40. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000). https://doi.org/10.1103/PhysRevA.61.042311

    Article  ADS  MathSciNet  Google Scholar 

  42. Schumacher, B., Westmoreland, M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006). https://doi.org/10.1103/PhysRevA.74.042305

    Article  ADS  Google Scholar 

  43. Holevo, A.S.: Quantum Systems, Channels, Information. De Gruyter, Berlin, Boston (2013). https://doi.org/10.1515/9783110273403

  44. Holevo, A.S.: Quantum channel capacities. Quantum Elec. 50(5), 440 (2020). https://doi.org/10.1070/QEL17285

    Article  ADS  Google Scholar 

  45. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf. 9, 3–11 (1973)

    MATH  Google Scholar 

  46. Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inform. Theory 44(1), 269–273 (1998). https://doi.org/10.1109/18.651037

    Article  MathSciNet  MATH  Google Scholar 

  47. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997). https://doi.org/10.1103/PhysRevA.56.131

    Article  ADS  Google Scholar 

  48. Grassl, M., Beth, T., Pellizzari, T.: Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997). https://doi.org/10.1103/PhysRevA.56.33

    Article  ADS  MathSciNet  Google Scholar 

  49. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  Google Scholar 

  50. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Uola, R., Costa, A.C.S., Nguyen, H.C., Gühne, O.: Quantum steering. Rev. Mod. Phys. 92, 015001 (2020). https://doi.org/10.1103/RevModPhys.92.015001

    Article  ADS  MathSciNet  Google Scholar 

  52. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010). https://doi.org/10.1103/RevModPhys.82.1155

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977). https://doi.org/10.1007/BF01609834

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15(01), 79–91 (2003). https://doi.org/10.1142/S0129055X03001576

    Article  MathSciNet  MATH  Google Scholar 

  55. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von neumann algebra. Comm. Math. Phys. 105(1), 123–131 (1986). https://doi.org/10.1007/BF01212345

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. 39, 97–108 (1988). https://doi.org/10.1093/qmath/39.1.97

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (under Grants No. 12105090 and No. 12074107), the Natural Science Foundation of Hubei Province of China (under Grant No. 2020CFB263), the Innovation Group Project of the Natural Science Foundation of Hubei Province of China (under Grant No. 2022CFA012), and the Program of Outstanding Young and Middle-aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province of China (under Grant No. T2020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghao Wang or Bin Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof for the monotonicity of the Holevo’s quantity

Proof

Let us consider a quantum state of system Q denoted by \(\rho ^{Q}=\sum _i p_i \rho _i^{Q} \) and quantum channel \(\varepsilon : {\mathcal {B}}(\mathcal {H_Q})\rightarrow {\mathcal {B}}(\mathcal {H_{Q}})\) applied on \(\rho ^Q\), that is,

$$\begin{aligned} \sigma ^{Q}\equiv \varepsilon (\rho ^{Q})= \sum _{k} E_k \rho ^{Q} E_k^{\dagger }, \end{aligned}$$
(A1)

where \(E_{k}\) are Kraus operators of \(\varepsilon \). Let us introduce an environment system labeled E. By Stinespring’s theorem [1, 2], the channel \(\varepsilon \) can also be represented as

$$\begin{aligned} \varepsilon (\rho ^{Q})=Tr_E\left( U (\rho ^{Q} \otimes (\vert {0}\rangle \langle {0}\vert )^{E})U^{\dagger }\right) =Tr_E[\sum _{mn} E_m \rho ^Q E_n^{\dagger } \otimes (\vert {m}\rangle \langle {n}\vert )^E], \nonumber \\ \end{aligned}$$
(A2)

where \(\{\vert {m}\rangle ^E\}\) forms a set of orthonormal bases of E. We also introduce a reference system labeled R and initialize the whole state as follows:

$$\begin{aligned} \rho ^{R Q E } = \sum _{i} p_i (\vert {i}\rangle \langle {i}\vert )^{R} \otimes \rho _i^{Q} \otimes (\vert {0}\rangle \langle {0}\vert )^{E}, \end{aligned}$$
(A3)

where \(\{\vert {i}\rangle ^R\}\) forms a set of orthonormal bases of R. The superscript is omitted if there is no ambiguity. Applying U on systems Q and E, we obtain

$$\begin{aligned} \sigma ^{R Q E } = \sum _{imn}p_i \vert {i}\rangle \langle {i}\vert \otimes E_{m}\rho _i E_{n}^{\dagger }\otimes \vert {m}\rangle \langle {n}\vert . \end{aligned}$$
(A4)

By the monotonicity of quantum relative entropy [53, 54], the following inequality holds:

$$\begin{aligned} \begin{aligned} S(\sigma ^{R Q}\Vert \sigma ^{R}\otimes \sigma ^{Q}) =&S(id\otimes \varepsilon (\rho ^{R Q})\Vert id\otimes \varepsilon (\rho ^{R}\otimes \rho ^{Q})\\ \le&S(\rho ^{R Q}\Vert \rho ^{R}\otimes \rho ^{Q}), \end{aligned} \end{aligned}$$
(A5)

where \(S(\rho \Vert \sigma )\equiv Tr (\rho \log (\rho -\sigma ))\) is the quantum relative entropy of \(\rho \) and \(\sigma \). Therefore,

$$\begin{aligned} \begin{aligned}&S(\sigma ^{R Q}\Vert \sigma ^{R}\otimes \sigma ^{Q})- S(\rho ^{R Q }\Vert \rho ^{R }\otimes \rho ^{ Q})\\ =&S(\rho ^{R Q})+S(\sigma ^{Q})-S(\sigma ^{R Q})-S(\rho ^{Q})\le 0. \end{aligned} \end{aligned}$$
(A6)

Since

$$\begin{aligned}&S(\rho ^{R Q})=H(p_i)+\sum _i p_i S(\rho _i), \end{aligned}$$
(A7)
$$\begin{aligned}&S(\sigma ^{Q})=S(\varepsilon (\rho )), \end{aligned}$$
(A8)
$$\begin{aligned}&S(\sigma ^{R Q})=H(p_i) + \sum _{i}p_i S(\varepsilon (\rho _i)), \end{aligned}$$
(A9)
$$\begin{aligned}&S(\rho ^{Q})=S(\rho ), \end{aligned}$$
(A10)

we obtain

$$\begin{aligned} S(\varepsilon (\rho ))- \sum _{i}p_i S(\varepsilon (\rho _i)) \le S(\rho )-\sum _i p_i S(\rho _i), \end{aligned}$$
(A11)

which is the monotonicity of the Holevo’s quantity. \(\square \)

We note that if \(\rho = \sum _i p_i \vert {\psi _i}\rangle \langle {\psi _i}\vert \), then Eq. (A11) is simplified as

$$\begin{aligned} S(\varepsilon (\rho ))- \sum _{i}p_i S(\varepsilon (\vert {\psi _i}\rangle \langle {\psi _i}\vert )) \le S(\rho ). \end{aligned}$$
(A12)

Appendix B: Proof for Proposition 1

Proof

Sufficiency. Let us suppose the channel \(\varepsilon \) is reversible on \(\mathcal{Q}\mathcal{S}\); that is, there exists a reversal channel denoted by \(\varepsilon ^{-1}\) such that for any \(\rho _i\), the following equation holds:

$$\begin{aligned} \varepsilon ^{-1}\circ \varepsilon (\rho _i)=\rho _i. \end{aligned}$$
(B13)

By the monotonicity of the Holevo’s quantity, it holds that

$$\begin{aligned} \begin{aligned}&S(\sum _i p_i\rho _i)-\sum _i p_i S(\rho _i)\\ \ge&S(\varepsilon (\sum _i p_i\rho _i))-\sum _i p_i S(\varepsilon (\rho _i))\\ \ge&S(\varepsilon ^{-1}\circ \varepsilon (\sum _i p_i\rho _i))- \sum _i p_i S(\varepsilon ^{-1}\circ \varepsilon (\rho _i))\\ =&S(\sum _i p_i\rho _i)-\sum _i p_i S(\rho _i). \end{aligned} \end{aligned}$$
(B14)

Thus, we obtain \(S(\varepsilon (\sum _i p_i\rho _i))-\sum _i p_i S(\varepsilon (\rho _i))=S(\sum _i p_i\rho _i)-\sum _i p_iS(\rho _i)\).

Necessity. We suppose Eq. (10) is true. Let us consider the following formula:

$$\begin{aligned} \begin{aligned} \Delta _i \equiv&S(\rho _i \Vert \rho _s) - S\left( \varepsilon (\rho _i) \Vert \varepsilon (\rho _s)\right) \\ =&S(\varepsilon (\rho _i))+\text {Tr} (\varepsilon (\rho _i)\log _2 \varepsilon (\rho _s))-S(\rho _i)-\text {Tr}(\rho _i\log _2 \rho _s)\\ \ge&0. \end{aligned} \end{aligned}$$
(B15)

For any \(p_i>0\) and \(\sum _i p_i =1\), we have

$$\begin{aligned} \begin{aligned}&\sum _i p_i \Delta _i \\&\quad =\sum _i p_i \left( S(\varepsilon (\rho _i))+\text {Tr}(\varepsilon (\rho _i)\log _2 \varepsilon (\rho _s))-S(\rho _i)-\text {Tr}(\rho _i\log _2 \rho _s)\right) \\&\quad = \sum _i p_i S(\varepsilon (\rho _i))+\text {Tr}(\sum _i \varepsilon (p_i\rho _i)\log _2 \varepsilon (\rho _s))-\sum _i p_i S(\rho _i)-\text {Tr}(\sum _i p_i\rho _i\log _2 \rho _s)\\&\quad = \sum _i p_i S(\varepsilon (\rho _i))-S(\varepsilon (\rho _s))-\sum _i p_iS(\rho _i)+S(\rho _s)\\&\quad = \chi (\mathcal{Q}\mathcal{S}, id)-\chi (\mathcal{Q}\mathcal{S},\varepsilon )\\&\quad = 0. \end{aligned} \nonumber \\ \end{aligned}$$
(B16)

This results in \(\Delta _i =S(\rho _i \Vert \rho _s) - S(\varepsilon (\rho _i) \Vert \varepsilon (\rho _s))=0\) for all \(\rho _i\). By the recoverability theorem [55, 56], there exists a perfect recovery channel \(\varepsilon ^{-1}\) (depends on \(\rho _s\) and \(\varepsilon \)) such that for any \(\rho _i\),

$$\begin{aligned} \varepsilon ^{-1}\circ \varepsilon (\rho _i)=\rho _i. \end{aligned}$$
(B17)

\(\square \)

Appendix C: Proof for Proposition 2

Proof

For any mixed state \(\rho \), there exists a set of orthonormal basis \(\{\vert {e_i}\rangle \}\) such that

$$\begin{aligned} \rho =\sum _{i}\rho _{i}\vert {e_i}\rangle \langle {e_i}\vert . \end{aligned}$$
(C18)

Let us suppose \(\varepsilon \) is a universal bleaching channel that transforms any pure input state \(\vert {\psi _i}\rangle \) into a constant state \(\sigma \), then we obtain

$$\begin{aligned} \varepsilon (\rho )=\varepsilon (\sum _{i}\rho _{i} \vert {e_i}\rangle \langle {e_i}\vert )=\sum _{i}\rho _{i}\varepsilon ( \vert {e_i}\rangle \langle {e_i}\vert )=\sigma , \end{aligned}$$
(C19)

that is to say, the channel \(\varepsilon \) also transforms any mixed state into \(\sigma \). The \(\rho \) can also been represented by another set of orthonormal basis \(\{\vert {f_i}\rangle \}\) as \(\rho =\sum _{ij}\rho _{ij} \vert {f_i}\rangle \langle {f_j}\vert \). Therefore, we have

$$\begin{aligned} \begin{aligned} \sigma =&\, \varepsilon (\sum _{ij}\rho _{ij} \vert {f_i}\rangle \langle {f_j}\vert )\\ =&\, \sum _{i}\rho _{ii} \varepsilon (\vert {f_i}\rangle \langle {f_i}\vert )+\sum _{i\ne j}\rho _{ij}\varepsilon ( \vert {f_i}\rangle \langle {f_j}\vert )\\ =&\, \sigma +\sum _{i\ne j}\rho _{ij}\varepsilon ( \vert {f_i}\rangle \langle {f_j}\vert ). \end{aligned} \end{aligned}$$
(C20)

Thus, we obtain \(\varepsilon ( \vert {f_i}\rangle \langle {f_j}\vert )=\delta _{ij}\sigma \), where \(\delta _{ij}\) is the Kronecker delta. Here, \(\{\vert {f_i}\rangle \}\) can be any orthogonal basis.

Let \(\vert {\Psi }\rangle ^{RQ}\) be an arbitrary pure state of systems R and Q described by

$$\begin{aligned} \vert {\Psi }\rangle ^{RQ} = \sum _i \sqrt{p_i}\vert {\psi _i}\rangle ^R\vert {i}\rangle ^Q, \end{aligned}$$
(C21)

where \(\{\vert {i}\rangle ^Q\}\) is the set of orthonormal basis of system Q. Applying the channel \(\varepsilon \) to the system Q, we obtain

$$\begin{aligned} \begin{aligned} \sigma ^{RQ'}=&\, id \otimes \varepsilon ((\vert {\Psi }\rangle \langle {\Psi }\vert )^{RQ})\\ =&\, \sum _{ij} \sqrt{p_i p_j}(\vert {\psi _i}\rangle \langle {\psi _j}\vert )^R\otimes \varepsilon ((\vert {i}\rangle \langle {j}\vert )^Q)\\ =&\, \sum _{ij} \sqrt{p_i p_j}(\vert {\psi _i}\rangle \langle {\psi _j}\vert )^R \otimes \sigma ^{Q'}\delta _{ij}\\ =&\, \sigma ^R \otimes \sigma ^{Q'}, \end{aligned} \end{aligned}$$
(C22)

where \(\sigma ^R=\sum _{i} p_i \vert {\psi _i}\rangle \langle {\psi _i}\vert \). This shows that the bleaching channel completely erases the information of the input system, not only the information it carries, but also all its correlations to the systems that initially entangle it. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, M. & Zhou, B. Quantifying the information distribution of quantum information masking. Quantum Inf Process 22, 284 (2023). https://doi.org/10.1007/s11128-023-04036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04036-8

Keywords

Navigation