Skip to main content
Log in

Masking Quantum Information Encoded in Pure and Mixed States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Masking of quantum information means that information is hidden from a subsystem and spread over a composite system. Modi et al. proved in [Phys. Rev. Lett. 120, 230501 (2018)] that this is true for some restricted sets of nonorthogonal quantum states and it is not possible for arbitrary quantum states. In this paper, we discuss the problem of masking quantum information encoded in pure and mixed states, respectively. Based on an established necessary and sufficient condition for a set of pure states to be masked by an operator, we find that there exists a set of four states that can not be masked, which implies that to mask unknown pure states is impossible. We construct a masker S and obtain its maximal maskable set, leading to an affirmative answer to a conjecture proposed in Modi’s paper mentioned above. We also prove that an orthogonal (resp. linearly independent) subset of pure states can be masked by an isometry (resp. injection). Generalizing the case of pure states, we introduce the maskability of a set of mixed states and prove that a commuting subset of mixed states can be masked by an isometry S while it is impossible to mask all of mixed states by any operator. We also find the maximal maskable sets of mixed states of the isometries S and S, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Modi, K., Pati, A.K., Sen(De), A., Sen, U.: Masking quantum information is impossible. Phys. Rew. Lett. 120, 230501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Fiurás̆ek J.: Optimal probabilistic cloning and purification of quantum states. Phys. Rev. A 70, 032308 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China-Phys. Mech. Astro. 62, 70301 (2019)

    Article  ADS  Google Scholar 

  6. Zukowski, M., Zeilinger, A., Horne, M., Weinfurter, H.: Quest for GHZ states. Acta. Phys. Pol. A 93, 187 (1998)

    Article  ADS  Google Scholar 

  7. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  8. Li, M.S., Wang, Y.L.: Masking quantum information in multipartite scenario. Phys. Rev. A 98, 062306 (2018)

    Article  ADS  Google Scholar 

  9. Li, B., Jiang, S.H., Liang, X.B., Li-Jost, X.Q., Fan, H., Fei, S.M.: Quantum information masking: deterministic versus probabilistic. Phys. Rev. A 99, 052343 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. Liang, X.B., Li, B., Fei, S.M.: Complete characterization of qubit masking. Phys. Rev. A 100(R), 030304 (2019)

    Article  ADS  Google Scholar 

  11. Li, M.S., Modi, K.: Probabilistic and approximate masking of quantum information. arXiv:1912.02419v11912.02419v1 (2019)

  12. Ding, F., Hu, X.: Masking quantum information on hyperdisks. arXiv:1909.11256 (2019)

  13. Lie, S.H., Kwon, H., Kim, M.S., Jeong, H.: Unconditionally secure qubit commitment scheme using quantum maskers. arXiv:1903.12304v1(2019)

  14. Lie, S.H., Jeong, H.: Randomness cost of masking quantum information and the information conservation law. arXiv:1908.07426v1 (2019)

  15. Ghosh, T., Sarkar, S., Behera, B.K., Panigrahi, P.K.: Masking of quantum information is possible. arXiv:1910.00938 (2019)

  16. Guo, Z.H., Cao, H.X., Qu, S.X.: Structures of three types of local quantum channels. Found. Phys. 45, 355–369 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This subject was supported by the National Natural Science Foundation of China (Nos. 11871318, 11771009), the Fundamental Research Funds for the Central Universities (GK202007002, GK201903001) and the Special Plan for Young Top-notch Talent of Shaanxi Province (1503070117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Guo, Z., Cao, H. et al. Masking Quantum Information Encoded in Pure and Mixed States. Int J Theor Phys 60, 2380–2399 (2021). https://doi.org/10.1007/s10773-020-04542-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04542-w

Keywords

Navigation