Skip to main content
Log in

Imaginaring and deimaginaring power of quantum channels and the trade-off between imaginarity and entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The resource theory of imaginarity provides a valuable framework for understanding the role of complex numbers. Quantum channels play a vital role in extraction and transmission of information, and they can both destroy and create imaginarity in quantum states. In this article, we introduce the concepts of imaginaring and deimaginaring power of quantum channels to describe quantum channels’ ability to create and destroy imaginarity. Furthermore, the imaginaring and deimaginaring power for several typical single-qubit channels based on \(l_{1}\) norm, robustness and relative entropy of imaginarity were computed. In addition, we define the non-imaginarity-generating channel as the completely positive trace-preserving map which does not generate quantum imaginarity from an real state. Several properties of non-imaginarity-generating channels are investigated. Finally, we explore the trade-off relationship between imaginarity and entanglement. The relationship between the deimaginaring power of quantum channels based on relative entropy of the imaginarity and entanglement is studied. Additionally, we explore the creation of imaginarity in a bipartite state. We demonstrate that it is dependent on both the mixedness of initial system and the minimum amount of entanglement that can be created. Our work further studies imaginarity, which will contribute to the development of quantum mechanics and quantum techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Wootters, W.K.: Entanglement sharing in real-vector-space quantum theory. Found. Phys. 42, 19–28 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Hardy, L., Wootters, W.K.: Limited holism and real-vector-space quantum theory. Found. Phys. 42, 454–473 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Aleksandrova, A., Borish, V., Wootters, W.K.: Real-vector-space quantum theory with a universal quantum bit. Phys. Rev. A 87, 052106 (2013)

    ADS  Google Scholar 

  4. Hickey, A., Gour, G.: Quantifying the imaginarity of quantum mechanics. J. Phys. A: Math. Theor. 51, 414009 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Wu, K., et al.: Operational resource theory of imaginarity. Phys. Rev. Lett. 126, 090401 (2021)

    MathSciNet  ADS  Google Scholar 

  6. Wu, K., et al.: Resource theory of imaginarity: quantification and state conversion. Phys. Rev. A 103, 032401 (2021)

    MathSciNet  ADS  Google Scholar 

  7. Wu, K., et al.: Resource theory of imaginarity: New distributed scenarios (2023). arXiv preprint arXiv:2301.04782

  8. Xue, S., Guo, J., Li, P., Ye, M., Li, Y.: Quantification of resource theory of imaginarity. Quantum Inf. Process. 20, 1–20 (2021)

    MathSciNet  MATH  ADS  Google Scholar 

  9. Chen, Q., Gao, T., Yan, F.: Measures of imaginarity and quantum state order (2022). arXiv preprint arXiv:2210.14443

  10. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    MATH  ADS  Google Scholar 

  11. Dakić, B., Vedral, V.: Brukner, Č: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    MATH  ADS  Google Scholar 

  12. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    ADS  Google Scholar 

  13. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    ADS  Google Scholar 

  14. Mišta, L., Jr., Tatham, R., Girolami, D., Korolkova, N., Adesso, G.: Measurement-induced disturbances and nonclassical correlations of Gaussian states. Phys. Rev. A 83, 042325 (2011)

    ADS  Google Scholar 

  15. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    MATH  ADS  Google Scholar 

  16. Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028–3032 (2017)

    MATH  ADS  Google Scholar 

  17. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  18. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    ADS  Google Scholar 

  19. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    ADS  Google Scholar 

  20. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    MathSciNet  ADS  Google Scholar 

  21. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    ADS  Google Scholar 

  22. Hu, X.: Channels that do not generate coherence. Phys. Rev. A 94, 012326 (2016)

    ADS  Google Scholar 

  23. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    MathSciNet  MATH  ADS  Google Scholar 

  24. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  25. Eltschka, C., Siewert, J.: Quantifying entanglement resources. J. Phys. A Math. Theor. 47, 424005 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  26. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  27. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  28. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  29. Slutsky, B.A., Rao, R., Sun, P.-C., Fainman, Y.: Security of quantum cryptography against individual attacks. Phys. Rev. A 57, 2383 (1998)

    ADS  Google Scholar 

  30. Renes, J.M., Grassl, M.: Generalized decoding, effective channels, and simplified security proofs in quantum key distribution. Phys. Rev. A 74, 022317 (2006)

    ADS  Google Scholar 

  31. Masanes, L.: Universally composable privacy amplification from causality constraints. Phys. Rev. Lett. 102, 140501 (2009)

    ADS  Google Scholar 

  32. Pawłowski, M.: Security proof for cryptographic protocols based only on the monogamy of bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)

    ADS  Google Scholar 

  33. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    ADS  Google Scholar 

  34. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    MathSciNet  MATH  ADS  Google Scholar 

  35. Gao, T., Yan, F., Li, Y.: Quantum secret sharing between m-party and n-party with six states. Sci. China Ser. G 52, 1191–1202 (2009)

    Google Scholar 

  36. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  37. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  38. Yan, F., Zhang, X.: A scheme for secure direct communication using epr pairs and teleportation. Eur. Phys. J. B-Condens. Matter Compl. Syst. 41, 75–78 (2004)

  39. Yu, X.-D., Zhang, D.-J., Xu, G., Tong, D.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302 (2016)

    ADS  Google Scholar 

  40. Liu, C., Yu, X.-D., Tong, D.: Flag additivity in quantum resource theories. Phys. Rev. A 99, 042322 (2019)

    ADS  Google Scholar 

  41. Takagi, R., Regula, B., Bu, K., Liu, Z.-W., Adesso, G.: Operational advantage of quantum resources in subchannel discrimination. Phys. Rev. Lett. 122, 140402 (2019)

    ADS  Google Scholar 

  42. Takagi, R., Regula, B.: General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks. Phys. Rev. X 9, 031053 (2019)

    Google Scholar 

  43. Ducuara, A.F., Skrzypczyk, P.: Operational interpretation of weight-based resource quantifiers in convex quantum resource theories. Phys. Rev. Lett. 125, 110401 (2020)

    MathSciNet  ADS  Google Scholar 

  44. Uola, R., Bullock, T., Kraft, T., Pellonpää, J.-P., Brunner, N.: All quantum resources provide an advantage in exclusion tasks. Phys. Rev. Lett. 125, 110402 (2020)

    MathSciNet  ADS  Google Scholar 

  45. Ye, M., Li, Y., Li, Z.: Operational characterization of weight-based resource quantifiers via exclusion tasks in general probabilistic theories. Quantum Inf. Process. 20, 1–28 (2021)

    MathSciNet  MATH  ADS  Google Scholar 

  46. Pourkarimi, M.R.: Time evolution of quantum correlation and entropic uncertainty relation in the presence of quantum memory under noisy channels and one-axis twisting hamiltonian. J. Res. Many-Body Syst. 10, 15–25 (2020)

    Google Scholar 

  47. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  48. Peres, A.: Quantum theory: concepts and methods. Springer, Berlin (1997)

    MATH  Google Scholar 

  49. Wilde, M.M.: Quantum information theory. Cambridge University Press (2013)

  50. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    MATH  ADS  Google Scholar 

  51. Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)

    ADS  Google Scholar 

  52. Horodecki, M., et al.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    ADS  Google Scholar 

  53. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    MATH  ADS  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Science Foundation of China (Grant Nos. 12071271,11671244). Y. Luo was supported by the National Natural Science Foundation of China (Grant No. 62001274)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Luo, Y. & Li, Y. Imaginaring and deimaginaring power of quantum channels and the trade-off between imaginarity and entanglement. Quantum Inf Process 22, 405 (2023). https://doi.org/10.1007/s11128-023-04131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04131-w

Keywords

Navigation