Skip to main content
Log in

A dynamic quantum group blind signature scheme based on four-particle cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Group blind signature (GBS) is the combination of group signature and blind signature (BS) concepts [1]. GBS allows any member of the group to generate a valid signature on behalf of the group, and the signer as a group member has no knowledge of the specific content of the message he or she is signing. In order to improve the suitability of group blind signatures for practical applications, it is significant to study GBS schemes that can flexibly add and remove group members. Therefore, in this article, we will propose a dynamic quantum group blind signature (QGBS) scheme based on four-particle cluster states. Cluster states are characterized by maximum connectivity and continuous entanglement. Some quantum technologies provide unconditional security for our scheme, such as quantum one-time pad (QOTP) and quantum key distribution protocol. If there is a dispute about who generated the signature, our scheme can identify the signer by opening the signature. And through security analysis, it can verify that our newly designed scheme satisfies the security characteristics of QGBS scheme as well as resists common attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availability

Not applicable.

References

  1. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution to electronic cash. In: International Conference on Financial Cryptography, pp 184–197 (1998). Springer

  2. Chaum, D., Heyst, E.v.: Group signatures. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp 257–265 (1991). Springer

  3. Camenisch, J., Michels, M.: A group signature scheme with improved efficiency. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 160–174 (1998). Springer

  4. Buser, M., Liu, J.K., Steinfeld, R., Sakzad, A., Sun, S.-F.: Dgm: A dynamic and revocable group Merkle signature. In: European Symposium on Research in Computer Security, pp 194–214 (2019). Springer

  5. Emura, K., Hayashi, T., Ishida, A.: Group signatures with time-bound keys revisited: a new model, an efficient construction, and its implementation. IEEE Trans. Dependable Secure Comput. 17(2), 292–305 (2017)

    Article  Google Scholar 

  6. Kim, H., Lee, Y., Abdalla, M., Park, J.H.: Practical Dynamic Group Signature with Efficient Concurrent Joins and Batch Verifications. Elsevier (2021)

    Book  Google Scholar 

  7. Zhang, L., Li, H., Li, Y., Yu, Y., Au, M.H., Wang, B.: An Efficient Linkable Group Signature for Payer Tracing in Anonymous Cryptocurrencies. Elsevier, BV (2019)

    Book  Google Scholar 

  8. Kundu, N., Debnath, S.K., Mishra, D.: A secure and efficient group signature scheme based on multivariate public key cryptography. J. Inform. Sec. Appl 58, 102776 (2021)

    Google Scholar 

  9. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint arXiv:quant-ph/0105032 (2001)

  10. Wen, X., Tian, Y., Ji, L., Niu, X.: A group signature scheme based on quantum teleportation. Phys. Scr. 81(5), 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Su, Q., Li, W.-M.: Improved group signature scheme based on quantum teleportation. Int. J. Theor. Phys. 53(4), 1208–1216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, K., Song, T., Zuo, H., Zhang, W.: A secure quantum group signature scheme based on bell states. Phys. Scr. 87(4), 045012 (2013)

    Article  ADS  Google Scholar 

  13. Xu, G.-B., Zhang, K.-J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14(7), 2577–2587 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jiang, D., Yuan, F., Xu, G.: Novel quantum group signature scheme based on orthogonal product states. Mod. Phys. Lett. B 35(26), 2150418 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dai, J., Zhang, S., Chang, Y., Li, X., Zheng, T.: A semi-quantum group signature scheme based on bell states. In: artificial intelligence and security: 6th international conference, ICAIS 2020, Hohhot, China, July 17–20, 2020, proceedings, Part II, pp. 246–257 (2020). Springer

  16. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology, pp. 199–203 (1983). Springer

  17. Xu, R., Huang, L., Yang, W., He, L.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)

    Article  ADS  Google Scholar 

  18. Zhang, J.-Z., Yang, Y.-Y., Xie, S.-C.: A third-party e-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56(9), 2981–2989 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Zhang, J.-Z., Xie, S.-C.: A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59(3), 719–729 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Yu, H., Qian, Y.: Quantum group blind signature scheme based on measurement-based quantum computation. In: international conference on computer network security and software engineering (CNSSE 2022), vol. 12290, pp. 195–202 (2022). SPIE

  21. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  22. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504 (2007)

    Article  ADS  Google Scholar 

  23. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with w states. Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  24. Liang, X.-Q., Wu, Y.-L., Zhang, Y.-H., Wang, S.-S., Xu, G.-B.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)

    Article  MATH  Google Scholar 

  25. Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kim, H.-J., Lim, J.I., Lee, D.H.: Efficient and secure member deletion in group signature schemes. In: international conference on information security and cryptology, pp. 150–161 (2000). Springer

  27. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  28. Feng, X., Wu, H., Zhou, X., Yao, Y.: Quantum blind signature scheme for supply chain financial. Quantum Inf. Process. 22(1), 5 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Xia, C., Li, H., Hu, J.: A novel quantum blind signature protocol based on five-particle entangled state. European Phys. J. Plus 136(2), 1–12 (2021)

    Article  ADS  Google Scholar 

  30. Zheng, T., Chang, Y., Zhang, S.-B.: Arbitrated quantum signature scheme with quantum teleportation by using two three-qubit ghz states. Quantum Inf. Process. 19(5), 1–15 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Xu, T.-J., Chen, Y., Geng, M.-J., Ye, T.-Y.: Single-state multi-party semiquantum key agreement protocol based on multi-particle ghz entangled states. Quantum Inf. Process. 21(7), 1–18 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, C.Q., Ye, T.Y., He, D., Gan, Z.G.: Multiparty semi-quantum secret sharing with d-level single-particle states. Int. J. Theor. Phys. 58(11), 3797–3814 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  34. Zhang, M.-H., Li, H.-F., Xia, Z.-Q., Feng, X.-Y., Peng, J.-Y.: Semiquantum secure direct communication using epr pairs. Quantum Inf. Process. 16(5), 1–14 (2017)

    Article  ADS  MATH  Google Scholar 

  35. He, Y.-F., Ma, W.-P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wang, Y., Lou, X., Fan, Z., Wang, S., Huang, G.: Verifiable multi-dimensional (t,n) threshold quantum secret sharing based on quantum walk. Int. J. Theor. Phys 61 (2022)

  37. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

  38. Xin, X., He, Q., Wang, Z., Yang, Q., Li, F.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank all the authors who participated in the discussion of this article and acknowledge support from the National Natural Science Foundation of China (Grant No. 62066015, Grant No. 62172182), the Hunan Natural Science Foundation of China (Grant No. 2020JJ4511), the Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4490), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 20A396)

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62066015 and Grant No. 62172182), the Hunan Natural Science Foundation of China (Grant No. 2020JJ4511), the Hunan provincial Natural Science Foundation of China (Grant No. 2020JJ4490), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 20A396)

Author information

Authors and Affiliations

Authors

Contributions

R-B L and J-X Z contributed to conceptualization; R-B L and J-X Z contributed to methodology; R-B L, J-X Z, Y-Q S, B-L L, LL, and L L performed formal analysis and investigation; J-X Z contributed to writing—original draft preparation; R-B l, J-X Z, and L L contributed to writing—review and editing; Y-Q S and B-L L performed funding acquisition; R-B L, Y-Q S, and B-L L contributed to resources; R-B L supervised the study.

Corresponding author

Correspondence to Rong-Bo Lu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

The authors all agreed to participate.

Consent for Publication

The authors all agreed to the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, RB., Zhong, JX., Shi, YQ. et al. A dynamic quantum group blind signature scheme based on four-particle cluster state. Quantum Inf Process 22, 157 (2023). https://doi.org/10.1007/s11128-023-03903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03903-8

Keywords

Navigation