Skip to main content
Log in

Detection of genuine entanglement for multipartite quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study genuine multipartite entanglement of arbitrary n-partite quantum states by representing the density matrices in terms of generalized Pauli operators. While the usual Bloch representation of a density matrix uses three types of generators in the special unitary Lie algebra \(\mathfrak {su}(d)\), the Weyl representation with generalized Pauli operators has one uniformed type of generators that simplifies computation. In this paper, we take the advantage of this simplicity to derive useful and operational criteria to detect genuine tripartite entanglement. We also generalize the results to obtain a sufficient criterion to detect genuine entanglement for multipartite quantum states in arbitrary dimensions. The new method can detect more genuine entangled states than previous methods as backed by detailed examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analysed during this study are available from the corresponding author on reasonable request.

References

  1. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hyllus, P.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  5. Tóth, G.: Multipartite entanglement and high precision metrology. Phys. Rev. A 85, 022322 (2012)

    Article  ADS  Google Scholar 

  6. Peres, A.: Sparability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hong, Y., Gao, T., Yan, F.L.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012)

    Article  ADS  Google Scholar 

  9. Schwemmer, C., Knips, L., Tran, M.C., et al.: Genuine multipartite entanglement without multipartite correlations. Phys. Rev. Lett. 114, 180501 (2015)

    Article  ADS  Google Scholar 

  10. Akbari-kourbolagh, Y.: Entanglement criteria for the three-qubit states. Int. J. Quantum Inf. 15, 1750049 (2017)

    Article  MathSciNet  Google Scholar 

  11. Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for tripartite systems based on local sum uncertainty relations. Phys. Rev. A 97, 042333 (2018)

    Article  ADS  Google Scholar 

  12. Li, M., Wang, J., Shen, S.Q., et al.: Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. 7, 17274 (2018)

    Article  ADS  Google Scholar 

  13. Yang, L.M., Sun, B.Z., Chen, B.: Quantum Fisher information-based detection of genuine tripartite entanglement. Quantum Inf. Process. 19, 262 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Li, M., Jia, L.X., Wang, J., et al.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)

    Article  ADS  Google Scholar 

  15. de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)

    Article  ADS  Google Scholar 

  16. Zhao, H., Zhang, M.M., Jing, N.: Separability criteria based on Bloch representation of density matrices. Quantum Inf. Process. 19, 14 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Li, M., Wang, Z., Wang, J., et al.: The norms of Bloch vectors and classification of four-qudits quantum states. EPL Europhys. Lett. 125, 20006 (2019)

    Article  ADS  Google Scholar 

  18. Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 23 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hong, Y., Gao, T., Yan, F.L.: Detection of k-partite entanglement and k-nonseparability of multipartite quantum states. Phys. Lett. A 401, 127347 (2021)

    Article  MathSciNet  Google Scholar 

  20. Li, M., Wang, J., Fei, S.M., et al.: Quantum separability criteria for arbitrary-dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)

    Article  ADS  Google Scholar 

  21. Xu, W., Zhu, C.J., Zheng, Z.J.: Necessary conditions for classifying m-separability of multipartite entanglements. Quantum Inf. Process. 19, 200 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bai, C.M., Ge, M.L., Jing, N.: Principal realization of the Yangian \(Y (\mathfrak{gl}(n))\). J. Math. Phys. 50, 013518 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Franca, D.S., Strelchuk, S., Studzinski, M.: Efficient classical simulation and benchmarking of quantum processes in the Weyl basis. Phys. Rev. Lett. 126, 210502 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. Huang, X.F., Jing, N., Zhang, T.G.: An upper bound of fully entangled fraction of mixed states. Commun. Theor. Phys. 65, 701 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, J., Chen, L.: Entanglement criterion via general symmetric informationally complete measurement. J. Phys. A Math. Theor. 55, 015302 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12075159 and 12126351, Simons Foundation under grant no. 523868, Academy for Multidisciplinary Studies, Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, YQ., Jing, N. et al. Detection of genuine entanglement for multipartite quantum states. Quantum Inf Process 21, 315 (2022). https://doi.org/10.1007/s11128-022-03659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03659-7

Keywords

Navigation