Skip to main content
Log in

Quantum Fisher information-based detection of genuine tripartite entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Genuine multipartite entanglement plays important roles in quantum information processing. The detection of genuine multipartite entanglement has been long time a challenging problem in the theory of quantum entanglement. We propose a criterion for detecting genuine tripartite entanglement of arbitrary dimensional tripartite states based on quantum Fisher information. We show that this criterion is more effective for some states in detecting genuine tripartite entanglement by detailed example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Guhne, O., Toth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Søensen, A.S., Mømer, K.: Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431 (2001)

    Article  ADS  Google Scholar 

  4. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  5. Tóh, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012)

    Article  ADS  Google Scholar 

  6. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  8. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  9. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature (London) 430, 54 (2004)

    Article  ADS  Google Scholar 

  10. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  11. Chen, P.X., Zhu, S.Y., Guo, G.C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phys. Rev. A 74, 032324 (2006)

    Article  ADS  Google Scholar 

  12. Hong, Y., Gao, T., Yan, F.L.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012)

    Article  ADS  Google Scholar 

  13. Gao, T., Yan, F., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of N-qubit states. Phys. Rev. Lett. 112, 180501 (2014)

    Article  ADS  Google Scholar 

  14. Sperling, J., Vogel, W.: Multipartite entanglement witnesses. Phys. Rev. Lett. 111, 110503 (2013)

    Article  ADS  Google Scholar 

  15. Eltschka, C., Siewert, J.: Entanglement of three-uqbit Greenberger–Horne–Zeilinger Csymmetric states. Phys. Rev. Lett. 108, 020502 (2012)

    Article  ADS  Google Scholar 

  16. Maleki, Y., Zheltikov, A.M.: Witness quantum entanlement in ensembles of nitrogen-vacany centers coupled to a superconducting resonator. Opt. Express 26, 14 (2019)

    Google Scholar 

  17. Maleki, Y., Zheltikov, A.M.: A high-N00N output of harmonincally driven cavity QED. Sci. Rep. 9, 16780 (2019)

    Article  ADS  Google Scholar 

  18. Guo, Y., Zhang, L.: Multipartite entanglement measure and a complete monogamy relations. Phys. Rev. A 101, 032301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Maleki, Y., Maleki, A.: Entangled multimode spin coherent states of trapped ions. J. Opt. Soc. Am. B 35, 6 (2018)

    Article  Google Scholar 

  20. Maleki, Y., Zheltikov, A.M.: Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit. Phys. Rev. A 97, 012312 (2018)

    Article  ADS  Google Scholar 

  21. Li, N., Luo, S.L.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  22. Akbari-Kourbolagh, Y., Azhdargalam, M.: Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 99, 012304 (2019)

    Article  ADS  Google Scholar 

  23. Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)

    Article  ADS  Google Scholar 

  24. Huber, M., Sengupta, R.: Witnessing genuine multipartite entanglement with positive maps. Phys. Rev. Lett. 113, 100501 (2014)

    Article  ADS  Google Scholar 

  25. Wu, J.Y., Kampermann, H., Bruß, D., Klockl, C., Huber, M.: Determining lower bounds on a measure of multipartite entanglement from few local observables. Phys. Rev. A 86, 022319 (2012)

    Article  ADS  Google Scholar 

  26. Bancal, J.D., Gisin, N., Liang, Y.C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  27. Huber, M., Perarnau-Llobet, M., de Vicente, J.I.: Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems. Phys. Rev. A 88, 042328 (2013)

    Article  ADS  Google Scholar 

  28. Clivaz, F., Huber, M., Lami, L., Murta, G.: Genuine-multipartite entanglement criteria based on positive maps. J. Math. Phys. 58, 082201 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, M., Fei, S.M.: Bell inequalities for multipartite qubit quantum systems and their maximal violation. Phys. Rev. A 86, 052119 (2012)

    Article  ADS  Google Scholar 

  30. de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)

    Article  ADS  Google Scholar 

  31. Li, M., Fei, S.M., Li-Jost, X., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338 (2015)

    Article  ADS  Google Scholar 

  32. Zhao, J.Y., Zhao, H., Jing, N.H., Fei, S.M.: Detection of genuine multipartite entanglement in multipartite systems. Int. J. Theor. Phys. 58, 3181 (2019)

    Article  MathSciNet  Google Scholar 

  33. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)

    Article  ADS  Google Scholar 

  34. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)

    Article  ADS  Google Scholar 

  35. Li, M., Jia, L.X., Wang, J., Shen, S.Q., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)

    Article  ADS  Google Scholar 

  36. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  37. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  38. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  39. Toth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A 47, 424006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hyllus, P., Laskowski, W., Schwemmer, R.C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11805143 and 11675113, Beijing Municipal Commission of Education (KZ201810028042) and Academy for Multidisciplinary Studies of Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LM., Sun, BZ., Chen, B. et al. Quantum Fisher information-based detection of genuine tripartite entanglement. Quantum Inf Process 19, 262 (2020). https://doi.org/10.1007/s11128-020-02766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02766-7

Keywords

Navigation