Skip to main content
Log in

Some new version of resistance distance-based topological indices of complete bipartite networks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Bipartite networks, also known as two-mode networks, are those in which nodes are separated into two disjoint sets and edges only connect nodes in different sets. These networks have numerous applications across different domains. For instance, in particle physics, bipartite networks are used to represent particle interactions and the detectors that observe them. Each set of nodes can represent a variety of particles and detectors, while edges indicate interactions or detections. These networks aid in understanding particle interactions, tracking particles, and optimizing detector design. An electrical network may be viewed as a graph with nodes and links. If the edges are replaced by resistors of resistance 1 (ohm), then resistance distance between two nodes within a connected network is characterized as the overall effective resistance linking them. This work derives some new version of resistance-based indices (\({\mathcal{R}}{\text{-indices}}\)) of a complete bipartite network. These recently introduced indices are helpful in the analysis of electrical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, vol. 290 (Macmillan, London, 1976)

    Book  Google Scholar 

  2. D.J. Klein, M. Randić, Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  3. H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum. Discret. Appl. Math. 155(5), 654–661 (2007)

    Article  MathSciNet  Google Scholar 

  4. Y. Hong, Z. Zhu, A. Luo, Some transformations on multiplicative eccentricity resistance-distance and their applications. Appl. Math. Comput. 323, 75–85 (2018)

    MathSciNet  Google Scholar 

  5. G.-D. Yu, X.-X. Li, G.-X. Cai, Maximum Reciprocal Degree Resistance Distance Index of Unicyclic Graphs. arXiv preprint https://arxiv.org/abs/1810.03420 (2018)

  6. J. Dinar et al., Wiener index for an intuitionistic fuzzy graph and its application in water pipeline network. Ain Shams Eng. J. 14(1), 101826 (2023)

    Article  MathSciNet  Google Scholar 

  7. S. Zaman, A. Ali, On connected graphs having the maximum connective eccentricity index. J. Appl. Math. Comput. 67, 131–142 (2021)

    Article  MathSciNet  Google Scholar 

  8. S. Zaman et al., QSPR analysis of some novel drugs used in blood cancer treatment via degree based topological indices and regression models. Polycycl. Aromat. Compd. 1–17 (2023)

  9. A.A. Khabyah et al., Minimum zagreb eccentricity indices of two-mode network with applications in boiling point and benzenoid hydrocarbons. Mathematics 10(9), 1393 (2022)

    Article  Google Scholar 

  10. M.K. Siddiqui et al., On network construction and module detection for molecular graph of titanium dioxide. J. Biomol. Struct. Dyn. 41(20), 10591–10603 (2023)

    Article  Google Scholar 

  11. M.K. Siddiqui, N.A. Rehman, M. Imran, Topological indices of some families of nanostar dendrimers. J. Math. Nanosci. 8(2), 91–103 (2018)

    Google Scholar 

  12. A. Hakeem, A. Ullah, S. Zaman, Computation of some important degree-based topological indices for γ-graphyne and Zigzag graphyne nanoribbon. Mol. Phys. 121(14), e2211403 (2023)

    Article  ADS  Google Scholar 

  13. M.K. Siddiqui et al., On topological analysis of niobium (II) oxide network via curve fitting and entropy measures. Complexity 2022 (2022)

  14. M.K. Siddiqui, Molecular structural descriptors of donut benzenoid systems. Polycycl. Aromat. Compd. 42(7), 4146–4172 (2022)

    Article  Google Scholar 

  15. S. Zaman et al., Mathematical analysis and molecular descriptors of two novel metal-organic models with chemical applications. Sci. Rep. 13(1), 5314 (2023)

    Article  ADS  Google Scholar 

  16. S. Hayat et al., Structure-property modeling for thermodynamic properties of benzenoid hydrocarbons by temperature-based topological indices. Ain Shams Eng. J. 15(3), 102586 (2024)

    Article  Google Scholar 

  17. S. Hayat, M. Arshad, A. Khan, Graphs with given connectivity and their minimum Sombor index having applications to QSPR studies of monocarboxylic acids. Heliyon 10(1), e23392 (2024)

    Article  Google Scholar 

  18. S. Hayat et al., On the binary locating–domination number of regular and strongly-regular graphs. J. Math. Inequal. 17(4), 1597–1623 (2023)

    Article  MathSciNet  Google Scholar 

  19. A. Ullah et al., Derivation of mathematical closed form expressions for certain irregular topological indices of 2D nanotubes. Sci. Rep. 13(1), 11187 (2023)

    Article  ADS  Google Scholar 

  20. A. Ullah et al., On the construction of some bioconjugate networks and their structural modeling via irregularity topological indices. Eur. Phys. J. E 46(8), 72 (2023)

    Article  Google Scholar 

  21. S. Hayat, Distance-based graphical indices for predicting thermodynamic properties of benzenoid hydrocarbons with applications. Comput. Mater. Sci. 230, 112492 (2023)

    Article  Google Scholar 

  22. M.K. Siddiqui et al., On physical analysis of enthalpy and entropy measures of iron (III) oxide. Eur. Phys. J. Plus 137(3), 306 (2022)

    Article  Google Scholar 

  23. M. Arockiaraj et al., Topological descriptors, entropy measures and NMR spectral predictions for nanoporous graphenes with [14] annulene pores. Int. J. Quantum Chem. 124(1), e27284 (2024)

    Article  Google Scholar 

  24. M. Arockiaraj et al., Topological and spectral properties of wavy zigzag nanoribbons. Molecules 28(1), 152 (2022)

    Article  Google Scholar 

  25. S. Zaman, A. Ullah, Kemeny’s constant and global mean first passage time of random walks on octagonal cell network. Math. Methods Appl. Sci. 46(8), 9177–9186 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  26. X. Yu et al., Matrix analysis of hexagonal model and its applications in global mean-first-passage time of random walks. IEEE Access 11, 10045–10052 (2023)

    Article  Google Scholar 

  27. T. Yan et al., Spectral techniques and mathematical aspects of K 4 chain graph. Phys. Scr. 98(4), 045222 (2023)

    Article  ADS  Google Scholar 

  28. S. Zaman et al., Study of mean-first-passage time and Kemeny’s constant of a random walk by normalized Laplacian matrices of a penta-chain network. Eur. Phys. J. Plus 138(8), 770 (2023)

    Article  Google Scholar 

  29. Z. Kosar, S. Zaman, M.K. Siddiqui, Structural characterization and spectral properties of hexagonal phenylene chain network. Eur. Phys. J. Plus 138(5), 415 (2023)

    Article  Google Scholar 

  30. S. Zaman et al., Structural analysis and topological characterization of sudoku nanosheet. J. Math. 2022 (2022)

  31. A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications. Acta Applicandae Mathematica 66, 211–249 (2001)

    Article  MathSciNet  Google Scholar 

  32. M. Fuchs, C.-K. Lee, The Wiener index of random digital trees. SIAM J. Discrete Math. 29(1), 586–614 (2015)

    Article  MathSciNet  Google Scholar 

  33. S. Li, Y. Song, On the sum of all distances in bipartite graphs. Discrete Appl. Math. 169, 176–185 (2014)

    Article  MathSciNet  Google Scholar 

  34. Y. Pan, J. Li, Kirchhoff index, multiplicative degree-Kirchhoff index and spanning trees of the linear crossed hexagonal chains. Int. J. Quantum Chem. 118(24), e25787 (2018)

    Article  Google Scholar 

  35. L. Zhang et al., The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. Discrete Appl. Math. 282, 243–256 (2020)

    Article  MathSciNet  Google Scholar 

  36. W. Zhu, X. Geng, Enumeration of the multiplicative degree-Kirchhoff index in the random polygonal chains. Molecules 27(17), 5669 (2022)

    Article  Google Scholar 

  37. I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs. Trans. Combin. 1(2), 27–40 (2012)

    MathSciNet  Google Scholar 

  38. V. Kulli, K. On, On K hyper-Banhatti indices and coindices of graphs. Int. Res. J. Pure Algebra 6(5), 300–304 (2016)

    Google Scholar 

  39. Y. Hong, Z. Zhu, A. Luo, Some transformations on multiplicative eccentricity resistance-distance and their applications. Appl. Math. Comput. Biol. 323, 75–85 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Ali Ahmad from Jazan University for his fruitful suggestions.

Funding

No funding is available for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to this manuscript in all stages, from conceptualization to the write up of final draft.

Corresponding author

Correspondence to Shahid Zaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, S., Raza, A. & Ullah, A. Some new version of resistance distance-based topological indices of complete bipartite networks. Eur. Phys. J. Plus 139, 357 (2024). https://doi.org/10.1140/epjp/s13360-024-05127-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05127-w

Navigation