Skip to main content
Log in

Quantum image edge detection based on eight-direction Sobel operator for NEQR

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum Sobel edge detection (QSED) is a kind of algorithm for image edge detection using quantum mechanism, which can solve the real-time problem encountered by classical algorithms. However, the existing QSED algorithms only consider two- or four-direction Sobel operator, which leads to a certain loss of edge detail information in some high-definition images. In this paper, a novel QSED algorithm based on eight-direction Sobel operator is proposed, which not only reduces the loss of edge information, but also simultaneously calculates eight directions’ gradient values of all pixel in a quantum image. In addition, the concrete quantum circuits, which consist of gradient calculation, non-maximum suppression, double threshold detection and edge tracking units, are designed in details. For a \({2^n} \times {2^n}\) image with q gray scale, the complexity of our algorithm can be reduced to O(\({n^2} + {q^2}\)), which is lower than other existing classical or quantum algorithms. And the simulation experiment demonstrates that our algorithm can detect more edge information, especially diagonal edges, than the two- and four-direction QSED algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: A review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

    Article  MathSciNet  Google Scholar 

  2. Cai, Y., Liu, X.W., Jiang, N.: A survey on quantum image processing. Chin. J. Electron. 27(4), 56–65 (2018)

    Article  Google Scholar 

  3. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yan, F., Venegas-Andraca, S.E., Hirota, K.: Toward implementing efficient image processing algorithms on quantum computers. Soft. Comput. 219, 1–13 (2022)

    Google Scholar 

  5. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceeding of the SPIE Conference Quantum Information and Computation, vol. 5105, pp. 137-147 (2003). https://doi.org/10.1117/12.485960

  6. Latorre, J.I.: Image compression and entanglement (2005) arXiv:quant-ph/0510031

  7. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010). https://doi.org/10.1007/s11128-009-0123-z

    Article  MathSciNet  Google Scholar 

  8. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  9. Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. Adv. Comput. Intell. Inform. 17(3), 404–417 (2013)

    Article  Google Scholar 

  10. Li, H.S., Zhu, Q., Zhou, R.G.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Yao, X.W., Wang, H., Liao, Z., Chen, M.C.: Quantum image processing and its application to edge detection: Theory and experiment (2018) arXiv:1801.01465 [quant-ph]

  12. Zhang, Y., Kai, L., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013). https://doi.org/10.1007/s11128-013-0567-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, G.L., Song, X.H., Venegas-Andraca, S.E., El-Latif, A.A.A.: QIRHSI: novel quantum image representation based on hsi color space model. Quantum Inf. Process. 21(5), 1–31 (2022)

    ADS  MathSciNet  Google Scholar 

  15. Le, P.Q., Iliyasu, A.M., Dong, F.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Hancock, E.R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015). https://doi.org/10.1007/s11128-014-0842-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Song, X., Wang, S., El-Latif, A.A.A.: Dynamic watermarking scheme for quantum images based on hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  18. Yan, F., Zhao, S., Venegas-Andraca, S.E., Hirota, K.: Implementing bilinear interpolation with quantum images. Digital Signal Process. 117(5), 1–31 (2021)

    Google Scholar 

  19. Xia, H., Li, H., Zhang, H., Liang, Y., Xin, J.: Novel multi-bit quantum comparators and their application in image binarization. Quantum Inf. Process. 18(7), 229 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yuan, S., Wen, C., Hang, B., Gong, Y.: The dual-threshold quantum image segmentation algorithm and its simulation. Quantum Inf. Process. 19(12), 425 (2020). https://doi.org/10.1007/s11128-020-02932-x

    Article  ADS  Google Scholar 

  21. Zhao, S., Yan, F., Chen, K., Yang, H.: Interpolation-based high capacity quantum image steganography. Int. J. Theor. Phys. 60(5), 3722–3743 (2021)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: A novel quantum image edge extraction algorithm. Science China Inf. Sci. 58(1), 12106–012106 (2015). https://doi.org/10.1007/s11432-014-5158-9

    Article  MATH  Google Scholar 

  23. Fan, P., Zhou, R.G., Hu, W., Jing, N.: Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. 18(1), 24 (2019). https://doi.org/10.1007/s11128-018-2131-3

    Article  ADS  MATH  Google Scholar 

  24. Zhou, R.G., Yu, H., Cheng, Y.: Quantum image edge extraction based on improved Prewitt operator. Quantum Inf. Process. 18(9), 261 (2019)

    Article  ADS  Google Scholar 

  25. Li, P.C., Shi, T., Lu, A.P.: Quantum implementation of classical Marr-Hildreth edge detection. Quantum Inf. Process. 12(2), 1–26 (2020)

    MathSciNet  Google Scholar 

  26. Zhou, R.G., Liu, D.Q.: Quantum image edge extraction based on improved Sobel operator. Int. J. Theor. Phys. 58(9), 1–17 (2019). https://doi.org/10.1007/s10773-019-04177-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Chetia, R., Boruah, S.M.B., Roy, S., Sahu, P.P.: Quantum image edge detection based on four directional Sobel operator. In: International Conference on Pattern Recognition and Machine Intelligence (PReMI 2019). Lecture Notes in Computer Science, vol 11941. Springer, Cham, pp. 532-540 (2019)

  28. Chetia, R., Boruah, S., Sahu, P.P.: Quantum image edge detection using improved Sobel mask based on NEQR. Quantum Inf. Process. 20(1), 21 (2021). https://doi.org/10.1007/s11128-020-02944-7

    Article  ADS  MathSciNet  Google Scholar 

  29. Zheng, Y.J., Zhang, Y.H., Wang, Z.W., Zhang, J., Fan, S.J.: Edge detection algorithm based on the eight directions sobel operator. Comput. Sci. 40(211), 345–356 (2013)

    Google Scholar 

  30. Oliveira, D.S., Ramos, R.V.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7(1), 17–26 (2007)

    Google Scholar 

  31. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theoret. Comput. Sci. 412(15), 1406–1418 (2011). https://doi.org/10.1016/j.tcs.2010.11.029

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1–16 (2014)

    MathSciNet  Google Scholar 

  33. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009). https://doi.org/10.3923/itj.2009.208.213

    Article  Google Scholar 

  34. Iliyasu, A.M., Le, P.Q., Yan, F., Bo, S., Garcia, J.A.S., Dong, F., Hirota, K.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013). https://doi.org/10.1504/IJICA.2013.053179

    Article  Google Scholar 

  35. Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: 2009 IEEE Computer Society Annual Symposium on VLSI, IEEE, pp. 229-234 (2009)

  36. Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: 2011 11th IEEE International Conference on Nanotechnology, IEEE, pp. 1430-1435 (2011). https://doi.org/10.1109/NANO.2011.6144350

  37. Li, P., Wang, B., Xiao, H., Liu, X.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(10), 3242–3270 (2018). https://doi.org/10.1007/s10773-018-3841-0

    Article  MATH  Google Scholar 

  38. Li, P., Liu, X.: Bilinear interpolation method for quantum images based on quantum fourier transform. Int. J. Quantum Inf. 16(4), 1850031 (2018)

    Article  MathSciNet  Google Scholar 

  39. Nielsem, M.A., Chuang, I.L.: Quantum Information Theory. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  40. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (62071240, 61802175), the Natural Science Foundation of Jiangsu Province (BK20171458), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, L. Quantum image edge detection based on eight-direction Sobel operator for NEQR. Quantum Inf Process 21, 190 (2022). https://doi.org/10.1007/s11128-022-03527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03527-4

Keywords

Navigation