Skip to main content
Log in

Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A two-qubit Heisenberg XYZ model with Dzyaloshinsky–Moriya (DM) and Kaplan–Shekhtman–Entin-Wohlman–Aharony (KSEA) interactions is considered at thermal equilibrium. Analytical formulas are derived for the local quantum uncertainty (LQU) and local quantum Fisher information (LQFI). Using the available expressions for the entropic quantum discord, we perform a comparative study of these measures of nonclassical correlation. Our analysis showed the following: all three measures of quantum correlation have similar qualitative and even quantitative behavior on temperature for different values of system parameters, there are regions in the parameter space correspondent to a local increase of correlations with increasing temperature, and sudden changes in the behavior of quantum correlations occur at certain values of the interaction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Earlier, a similar definition was proposed by Everett for the canonical correlation [10].

  2. Note that the expressions for the density matrix elements and partition function, Eqs. (23) and (24) in Ref. [51], contain errors.

References

  1. Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology (1998), http://www.theory.caltech.edu/~preskill/ph229

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, P.K., Bachor, H.A., Andersen, U.L., Leuchs, G.: Colloquium: The Einstein–Podolsky–Rosen paradox: From concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996); Erratum in: Phys. Rev. Lett. 78, 2031 (1997)

  8. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Everett III, E.: The theory of the universal wave function. In: The Many-Worlds Interpretation of Quantum Mechanics. DeWitt, B.S., Graham, N. (Eds.). Princeton University Press, Princeton, N.J. (1973)

  11. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  12. Zurek, W.H.: Einselection and decoherence from an information theory perspective. Ann. Phys. (Leipzig) 9, 855 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  14. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6890 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)

    Article  ADS  Google Scholar 

  16. Datta, A.: Studies on the role of entanglement in mixed-state quantum computation. Dissertation. The University of New Mexico, Albuquerque (2008), arXiv:0807.4490v1 [quant-ph]

  17. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  18. Merali, Z.: Quantum computing: the power of discord. Nature 474, 24–26 (2011)

    Article  ADS  Google Scholar 

  19. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: Quantum discord and other measures of quantum correlation. arXiv:1112.6238v1 [quant-ph]

  20. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  21. Aldoshin, S.M., Fel’dman, E.B., Yurishchev, M.A.: Quantum entanglement and quantum discord in magnetoactive materials (Review Article). Fiz. Nizk. Temp. 40, 5 (2014). ([in Russian])

  22. Aldoshin, S.M., Fel’dman, E.B., Yurishchev, M.A.: Quantum entanglement and quantum discord in magnetoactive materials (Review Article). Low Temp. Phys. 40, 3 (2014). ([in English])

  23. Streltsov, A.: Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory. Springer Briefs in Physics, Springer, Berlin (2015)

    MATH  Google Scholar 

  24. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  27. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  28. Guo, J.-L., Mi, Y.-J., Zhang, J., Song, H.-S.: Thermal quantum discord of spins in an inhomogeneous magnetic field. J. Phys. B: At. Mol. Opt. Phys. 44, 065504 (2011)

    Article  ADS  Google Scholar 

  29. Campbell, S., Richens, J., Lo Gullo, N., Busch, T.: Criticality, factorization and long-range correlations in the anisotropic XY-model. Phys. Rev. A 88, 062305 (2013)

    Article  ADS  Google Scholar 

  30. Moreva, E., Gramegna, M., Yurischev, M.A.: Exploring quantum correlations from discord to entanglement. Adv. Sci. Eng. Med. 9, 46 (2017)

    Article  Google Scholar 

  31. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations (Topical review). J. Phys. A: Math. Theor. 49, 473001 (2016)

    Article  ADS  MATH  Google Scholar 

  32. Bera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen(De), A., Sen, U.: Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys. 81, 024001 (2018)

  33. Brodutch, A., Terno, D.R.: Why should we care about quantum discord? In: Fanchini, F.F., Soares-Pinto, D.O., Adesso, G. (eds.) Lectures on General Quantum Correlations and Their Applications. Springer, Berlin (2017)

    MATH  Google Scholar 

  34. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  35. Ye, B.-L., Fei, S.-M.: A note on one-way quantum deficit and quantum discord. Quantum Inf. Process. 15, 279 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gilorami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  37. Fisher, R.A.: Theory of statistical estimation. Math. Proc. Cambridge Phil. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  38. Efron, B.: Fisher in the 21st century. Statist. Sci. 13, 95 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Petz, D., Ghinea, C.: Introduction to quantum fisher infirmation. In: Quantum Probability and Related Topics. Word Scientific, Singapore (2011) arXiv:1008.2417v1 (2010)

  40. Ly, A., Marsman, M., Verhagen, J., Grasman, R., Wagenmakers, E.-J.: A tutorial on Fisher information. arXiv:1705.01064v2 (2017)

  41. Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)

    Google Scholar 

  42. Jafari, R., Akbari, A.: Dynamics of quantum coherence and quantum Fisher information after a sudden quench. Phys. Rev. A 101, 062105 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S, Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014) arXiv:1309.1472v4 (2014)

  44. Kim, S., Li, L., Kumar, A., Wu, J.: Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97, 032326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. Yurischev, M.A.: On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions. Quantum Inf. Process. 19, 336 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Yurischev, M.A.: On the quantum discord of general \(X\) states. Quantum Inf. Process. 14, 3399 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  48. Jebli, L., Benzimoun, B., Daoud, M.: Quantum correlations for two-qubit \(X\) states through the local quantum uncertainty. Int. J. Quant. Inf. 15, 1750020 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bera, M.N.: Role of quantum correlation in metrology beyond standard quantum limit. arXiv:1405.5357v2 (2014)

  50. Slaoui, A., Bakmou, L., Daoud, M., Ahl Laamara, R.: A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg \(XY\) model. Phys. Lett. A 383, 2241 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Haseli, S.: Local quantum Fisher information and local quantum uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii-Moriya interactions. Laser Phys. 30, 105203 (2020)

    Article  ADS  Google Scholar 

  52. Muthuganesan, R., Chandrasekar, V. K.: Quantum Fisher information and skew information correlations in dipolar spin system. arXiv:2011.05879v1 (2020)

  53. Ye, B.-L., Li, B., Liang, X.-B., Fei, S.-M.: Local quantum Fisher information and one-way quantum deficit in spin-\(\frac{1}{2}\) XX Heisenberg chain with three-spin interaction. Int. J. Quant. Inf. 18, 2050016 (2020)

    Article  MATH  Google Scholar 

  54. Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole-dipole interaction. Quantum Inf. Process. 12, 3587 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Arnold, V.I.: Catastrophe theory. Nauka, Moskva (1990) [in Russian], Springer, Berlin (1992) [in English]

  56. Park, D.: Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions. Quantum Inf. Process. 18, 172 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the program CITIS # AAAA-A19-119071190017-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yurischev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, A.V., Yurischev, M.A. Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions. Quantum Inf Process 21, 92 (2022). https://doi.org/10.1007/s11128-022-03427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03427-7

Keywords

Navigation