Skip to main content
Log in

On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The anisotropic Heisenberg two-spin-1/2 model in an inhomogeneous magnetic field with both antisymmetric Dzyaloshinsky–Moriya and symmetric Kaplan–Shekhtman–Entin-Wohlman–Aharony cross interactions is considered at thermal equilibrium. Using a group-theoretical approach, we find fifteen spin Hamiltonians and as many corresponding Gibbs density matrices (quantum states) whose eigenvalues are expressed only through square radicals. We also found local unitary transformations that connect nine of this fifteen state collection, and one of them is the X quantum state. Since such quantum correlations as quantum entanglement, quantum discord, one-way quantum work deficit, and others are known for the X state, this allows to get the quantum correlations for any member from the nine state family. Further, we show that the remaining six quantum states are separable and that they are also connected by local unitary transformations, but, however, now the case with known correlations beyond entanglement is generally not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One may also choose \({\tilde{Y}}=\frac{1}{\sqrt{2}} \left( \begin{array}{ll} 1&{}i\\ i&{}1 \end{array} \right) \) that leads to the relations \({\tilde{Y}}^\dagger \sigma _x {\tilde{Y}}=\sigma _x\), \({\tilde{Y}}^\dagger \sigma _y {\tilde{Y}}=\sigma _z\), and \({\tilde{Y}}^\dagger \sigma _z {\tilde{Y}}=-\sigma _y\).

  2. We omit the case \(U_{00} (=E)\) because \(\{E\}\) is the trivial group.

References

  1. Dzialoshinskii, I.E.: Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. ZhETF 32, 1547 (1957) [in Russian]; Sov. Phys. JETP 5, 1259 (1957) [in English]

  2. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    ADS  Google Scholar 

  3. Dzialoshinskii, I.E.: The magnetic structure of fluorides of the transition metals. ZhETF 33, 1454 (1957) [in Russian]; Sov. Phys. JETP 6, 1120 (1958) [in English]

  4. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)

    ADS  Google Scholar 

  5. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    ADS  Google Scholar 

  6. Kaplan, T.A.: Single-band Habbard model with spin-orbit coupling. Z. Phys. B Condens. Matter 49, 313 (1983)

    ADS  Google Scholar 

  7. Shekhtman, L., Entin-Wohlman, O., Aharony, A.: Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836 (1992)

    ADS  Google Scholar 

  8. Shekhtman, L., Entin-Wohlman, O., Aharony, A.: Bond-dependent symmetric and antisymmetric superexchange interactions in \({\rm La_2CuO_4}\). Phys. Rev. B 47, 174 (1993)

    ADS  Google Scholar 

  9. Zheludev, A., Maslov, S., Tsukada, I., Zaliznyak, I., Regnault, L.P., Masuda, T., Uchinokura, K., Erwin, R., Shirane, G.: Experimental evidence for Shekhtman–Entin-Wohlman–Aharony interactions in \({\rm Ba_2CuGe_2O_7}\) (1998). arXiv:cond-mat/9805236v1

  10. Zheludev, A., Maslov, S., Tsukada, I., Zaliznyak, I., Regnault, L.P., Masuda, T., Uchinokura, K., Erwin, R., Shirane, G.: Experimental evidence for Kaplan-Shekhtman–Entin-Wohlman–Aharony interactions in \({\rm Ba_2CuGe_2O_7}\). Phys. Rev. Lett. 81, 5410 (1998)

    ADS  Google Scholar 

  11. Yildirim, T., Harris, A.B., Aharony, A., Entin-Wohlman, O.: Anisotropic spin Hamiltonians due to spin-orbit and Coulomb exchange interactions. Phys. Rev. B 52, 10239 (1995)

    ADS  Google Scholar 

  12. Zhang, G.-F.: Thermal entanglement and teleportation in two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    ADS  Google Scholar 

  13. Li, D.-C., Wang, X.-P., Cao, Z.-L.: Thermal entanglement in the anisotropic Heisenberg XXZ model with Dzyaloshinskii–Moriya interaction. J. Phys. Condens. Matter 20, 325229 (2008)

    Google Scholar 

  14. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    ADS  Google Scholar 

  15. Li, D.-C., Cao, Zh-L: Effect of different Dzyaloshinskii–Moriya interactions on entanglement in the Heisenberg XYZ chain. Int. J. Quantum Inf. 7, 547 (2009)

    MATH  Google Scholar 

  16. Chen, Y.-X., Yin, Z.: Thermal quantum discord in anisotropic Heisenberg XXZ model with Dzyaloshinskii–Moriya interaction. Commun. Theor. Phys. (China) 54, 60 (2010)

    ADS  MATH  Google Scholar 

  17. Tursun, M., Abliz, A., Mamtimin, R., Abliz, A., Pan-Pan, Q.: Various correlations in anisotropic Heisenberg XYZ model with Dzyaloshinskii–Moriya interaction. Chin. Phys. Lett. 30, 030303 (2013)

    ADS  Google Scholar 

  18. Zidan, N.: Quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii–Moriya interaction. J. Quantum Inf. Sci. 4, 104 (2014)

    Google Scholar 

  19. Park, D.: Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions. Quantum Inf. Process. 18, 172 (2019)

    ADS  MathSciNet  Google Scholar 

  20. Sun, Y., Ma, X.-P., Guo, J.-L.: Dynamics of non-equilibrium thermal quantum correlation in a two-qubit Heisenberg XYZ model. Quantum Inf. Process. 19, 98 (2020)

    ADS  MathSciNet  Google Scholar 

  21. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 11, 1837 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    ADS  Google Scholar 

  25. Aldoshin, S.M., Fel’dman, E.B., Yurishchev, M.A.: Quantum entanglement and quantum discord in magnetoactive materials (Review Article). Fiz. Nizk. Temp. 40, 5 (2014) [in Russian]; Low Temp. Phys. 40, 3 (2014) [in English]

  26. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Fanchini, F.F., Soares-Pinto, D.O., Adesso, G. (eds.): Lectures on General Quantum Correlations and Their Applications. Springer, Berlin (2017)

    MATH  Google Scholar 

  28. Bera, A., Das, T., Sadhukhan, D., Roy, S.S., De Sen, A., Sen, U.: Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys. 81, 024001 (2018)

    ADS  MathSciNet  Google Scholar 

  29. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Rau, A.R.P.: Algebraic characterization of \(X\)-states in quantum information. J. Phys. A: Math. Theor. 42, 412002 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Reading (1964)

    MATH  Google Scholar 

  33. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit \(X\) states. Phys. Rev. A 84, 042313 (2011)

    ADS  Google Scholar 

  34. Huang, Y.: Quantum discord for two-qubit \(X\) states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    ADS  Google Scholar 

  35. Jing, N., Yu, B.: Quantum discord of \(X\)-states as optimization of a one variable function. J. Phys. A Math. Theor. 49, 385302 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Yurischev, M.A.: Quantum discord for general X and CS states: a piecewise-analytical-numerical formula. arXiv:1404.5735v1 [quant-ph]

  37. Yurishchev, M.A.: NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore. ZhETF 146, 946 (2014) [in Russian]; J. Exp. Theor. Phys. 119, 828 (2014) [in English]. arXiv:1503.03316v1 [quant-ph]

  38. Yurischev, M.A.: On the quantum discord of general \(X\) states. Quantum Inf. Process. 14, 3399 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Yurischev, M.A.: Extremal properties of conditional entropy and quantum discord for XXZ, symmetric quantum states. Quantum Inf. Process. 16, 249 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Wang, Y.-K., Jing, N., Fei, S.-M., Wang, Z.-X., Cao, J.-P., Fan, H.: One-way deficit of two-qubit \(X\) states. Quantum Inf. Process. 14, 2487 (2015)

    ADS  MATH  Google Scholar 

  41. Ye, B.-L., Fei, S.-M.: A note on one-way quantum deficit and quantum discord. Quantum Inf. Process. 15, 279 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Ye, B.-L., Wang, Y.-K., Fei, S.-M.: One-way quantum deficit and decoherence for two-qubit \(X\) states. Int. J. Theor. Phys. 55, 2237 (2016)

    MATH  Google Scholar 

  43. Yurischev, M.A.: Bimodal behavior of post-measured entropy and one-way quantum deficit for two-qubit X states. Quantum Inf. Process. 17, 6 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Yurischev, M.A.: Phase diagram for the one-way quantum deficit of two-qubit X states. Quantum Inf. Process. 18, 124 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Yurischev, M.A.: Temperature-field phase diagram of one-way quantum deficit in two-qubit XXZ spin systems. Quantum Inf. Process. 19, 110 (2020)

    ADS  MathSciNet  Google Scholar 

  46. Weaver, J.R.: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. Am. Math. Mon. 92, 711 (1985)

    MathSciNet  MATH  Google Scholar 

  47. Yurishchev, M.A.: Quantum discord for two-qubit CS states: Analytical solution. arXiv:1302.5239v3 [quant-ph]

  48. Yurishchev, M.A.: On the theory of double Ising chains. The model in zero external field. Fiz. Nizk. Temp. 4, 646 (1978) [in Russian]; Sov. J. Low Temp. Phys. 4, 311 (1978) [in English]

  49. Hamermesh, M.: Group Theory and Its Application to Physical Problems. Addison-Wesley, Massachusetts (1962)

    MATH  Google Scholar 

  50. Bethe, H.A.: Intermediate Quantum Mechanics. Benjamin, New York (1964)

    Google Scholar 

  51. Fel’dman, E.B., Kuznetsova, E.I., Yurishchev, M.A.: Quantum correlations in a system of nuclear \(s=1/2\) spins in a strong magnetic field. J. Phys. A Math. Theor. 45, 475304 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Rau, A.R.P.: Manipulating two-spin coherences and qubit pairs. Phys. Rev. A 61, 032301 (2000)

    ADS  MathSciNet  Google Scholar 

  53. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

    ADS  MathSciNet  Google Scholar 

  54. Marceaux, J.P., Rau, A.R.P.: Placing Kirkman’s schoolgirls and quantum spin pairs on the Fano plane: a rainbow of four primary colors, a harmony of fifteen tones. arXiv:1905.06914v1 [quant-ph]

  55. Marceaux, J.P., Rau, A.R.P.: Mapping qubit algebras to combinatorial designs. Quantum Inf. Process. 19, 49 (2020)

    ADS  MathSciNet  Google Scholar 

  56. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    ADS  MATH  Google Scholar 

  59. Zhou, J., Hu, X., Jing, N.: Quantum discord of certain two-qubit states. Int. J. Theor. Phys. 59, 415 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed as a part of the state task of the RF, CITIS # AAAA-A19-119071190017-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yurischev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurischev, M.A. On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin-Wohlman–Aharony interactions. Quantum Inf Process 19, 336 (2020). https://doi.org/10.1007/s11128-020-02835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02835-x

Keywords

Navigation