Skip to main content
Log in

Quantum discord in spin systems with dipole–dipole interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The behavior of total quantum correlations (discord) in dimers consisting of dipolar-coupled spins 1/2 are studied. We found that the discord \(Q=0\) at absolute zero temperature. As the temperature \(T\) increases, the quantum correlations in the system increase at first from zero to its maximum and then decrease to zero according to the asymptotic law \(T^{-2}\). It is also shown that in absence of external magnetic field \(B\), the classical correlations \(C\) at \(T\rightarrow 0\) are, vice versa, maximal. Our calculations predict that in crystalline gypsum \(\hbox {CaSO}_{4}\cdot \hbox {2H}_{2}{\hbox {O}}\) the value of natural \((B=0)\) quantum discord between nuclear spins of hydrogen atoms is maximal at the temperature of 0.644 \(\upmu \)K, and for 1,2-dichloroethane \(\hbox {H}_{2}\)ClC–\(\hbox {CH}_{2}{\hbox {Cl}}\) the discord achieves the largest value at \(T=0.517~\upmu \)K. In both cases, the discord equals \(Q\approx 0.083\) bit/dimer what is \(8.3\,\%\) of its upper limit in two-qubit systems. We estimate also that for gypsum at room temperature \(Q\sim 10^{-18}\) bit/dimer, and for 1,2-dichloroethane at \(T=90\) K the discord is \(Q\sim 10^{-17}\) bit per a dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zurek, W.H.: Einselection and decoherence from information theory perspective. Ann. Phys. (Leipzig) 9, 855–864 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6906 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Dynamics of quantum phase transition in an array of Josephson junctions. Phys. Rev. Lett. 88(017901), 1–4 (2001)

    Google Scholar 

  4. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90(050401), 1–4 (2003)

    MathSciNet  Google Scholar 

  5. Zurek, W.H.: Quantum discord and Maxwell’s demons. Phys. Rev. A 67(012320), 1–6 (2003)

    Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Valiev, K.A., Kokin, A.A.: Quantum computers: hopes and reality. Research Center “Regular and Chaotic Dynamics”. Moscow and Izhevsk (2002) (in Russian)

  8. Valiev, K.A.: Quantum computers and quantum computations. Phys. Usp. 48(1), 1–36 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(050502), 1–4 (2008)

    Google Scholar 

  12. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(200501), 1–4 (2008)

    Google Scholar 

  13. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78(224413), 1–7 (2008)

    Google Scholar 

  14. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80(022108), 1–9 (2009)

    Google Scholar 

  15. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105(095702), 1–4 (2010)

    Google Scholar 

  16. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81(052318), 1–6 (2010)

    Google Scholar 

  17. Céleri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measuresares. Int. J. Quantum Inf. 9, 1837–1873 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Modi, K., Brodutch, A., Cable, H., Paterik, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  19. Khutsishvili, G.R.: Magnetic properties of alum at temperatures below 0,\(1^{0}\). Usp. Fiz. Nauk. 40, 621–624 (1950)

    Google Scholar 

  20. Jensen, J., Mackintosh, A.R.: Rare Earth Magnetism. Structures and Excitations. Clarendon Press, Oxford (1991)

    Google Scholar 

  21. Pake, G.E.: Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J. Chem. Phys. 16, 327–336 (1948)

    Article  ADS  Google Scholar 

  22. Gutowsky, H.S., Kistiakowsky, G.B., Pake, G.E., Purcell, E.M.: Structural investigations by means of nuclear magnetism. I. Rigid crystal lattices. J. Chem. Phys. 17, 972–981 (1949)

    Article  ADS  Google Scholar 

  23. Abragam, A.: The Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961)

    Google Scholar 

  24. Günter, H.: NMR Spectroscopy. An introduction. Wiley, Chichester (1980)

    Google Scholar 

  25. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill Book, New York City (1968)

    Google Scholar 

  26. Chistyakov, V.P.: Course of Probability Theory. Nauka, Moscow (1982). (in Russian)

    Google Scholar 

  27. Mityugov, V.V.: Physical Principles of Information Theory. Soviet Radio, Moscow (1976). (in Russian)

    Google Scholar 

  28. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  29. Holevo, A.S.: Quantum Systems, Channels, Information. MTsNMO, Moscow (2010). (in Russian)

    Google Scholar 

  30. Holevo, A.S.: Probability and Statistical Aspects of Quantum Theory. MTsNMO, Moscow (2003)

    Google Scholar 

  31. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 10, 307–315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Adiabatic demagnetization and generation of entanglement in spin systems. Phys. Lett. A 376, 925–929 (2012)

    Article  ADS  Google Scholar 

  33. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 11, 1603–1617 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  35. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  36. O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63(052302), 1–9 (2001)

    Google Scholar 

  37. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81(052107), 1–6 (2010)

    Google Scholar 

  38. Li, B., Wang, Z.-X., Fei, S.-M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83(022321), 1–5 (2011)

    Google Scholar 

  39. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(042303), 1–6 (2008)

    Google Scholar 

  40. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105(190502), 1–4 (2010)

    Google Scholar 

  41. Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as optimal resource for quantum communication. arXiv:1203.1629v1 [quant-ph]

  42. Auccaise, R., Maziero, J., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107(070501), 1–5 (2011)

    Google Scholar 

  43. Maziero, J., Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86–104 (2013). arXiv:1212.2427v1 [quant-ph]

    Article  ADS  Google Scholar 

  44. Passante, G., Moussa, O., Trottier, D.A., Laflamme, R.: Experimental detection of nonclassical correlations in mixed-state quantum computation. Phys. Rev. A 84(044302), 1–4 (2011)

    Google Scholar 

  45. Katiyar, H., Roy, S.S., Mahesh, T.S., Patel, A.: Evolution of quantum discord and its stability in two-qubit NMR systems. Phys. Rev. A 86(012309), 1–8 (2012)

    Google Scholar 

  46. Alexandrov, N.M., Skripov, F.I.: Structural studies of crystals by nuclear magnetic resonance. Usp. Fiz. Nauk 75, 585–628 (1961)

    Article  Google Scholar 

  47. Zhang, J., Ditty, M., Burgarth, D., Ryan, C.A., Chandrashekar, C.M., Laforest, M., Moussa, O., Baugh, J., Laflamme, R.: Quantum data bus in dipolar coupled nuclear spin qubits. Phys. Rev. A 80(012316), 1–5 (2009)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the program No. 8 of the Presidium of RAS and grant of RFBI 13-03-00017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, E.I., Yurischev, M.A. Quantum discord in spin systems with dipole–dipole interaction. Quantum Inf Process 12, 3587–3605 (2013). https://doi.org/10.1007/s11128-013-0617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0617-6

Keywords

Navigation