Skip to main content
Log in

QIRHSI: novel quantum image representation based on HSI color space model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present QIRHSI, a novel quantum image representation method based on the HSI color space model. QIRHSI integrates the advantages of the Flexible Representation of Quantum Images (FRQI) model and the Novel Enhanced Quantum Representation (NEQR) model. On the one hand, the proposed QIRHSI model is better suited for the image processing related to intensity information via binary qubit sequence than multi-channel representation for quantum image (MCQI) (multi-channel FRQI). On the other hand, the QIRHSI model requires less storage space (10 qubits) in the hue and saturation channels, compared with the novel quantum representation of color digital images (NCQI) (tri-channel NEQR) model in RGB (24 qubits). Secondly, the polynomial preparation for constructing the QIRHSI state, the quantum image processing operations, an application of quantum image encryption and the optimized image preparation resources are explored, respectively. The ratio of optimization by preparing QIRHSI ranges from 55.87 to 95.72\(\%\) on different \(8 \times 8\) sample images. Finally, the effectiveness, feasibility and complexity of the proposed quantum image representation and their associated operations are proved through theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceeding of 35th Annual Symposium Foundations of Computer Science, IEEE Computer Soc. Press, Los Almitos, CA, pp. 124–134 (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Gonzales, R., Woods, R., Eddins, S.: Digital Image Processing. Publishing House of Electronics Industry, Beijing (2002)

    Google Scholar 

  6. Yang, J., Huang, C.B.: Digital Image Processing and MATLAB Realization. Electronic Industry Press, Beijing (2010)

    Google Scholar 

  7. Fu, X.W., Ding, M.Y., Sun, Y.G., Chen, S.B.: A new quantum edge detection algorithm for medical images. In: Proceeding of Medical Imaging, Parallel Processing of Images and Optimization Techniques. SPIE. vol. 7497 (2009)

  8. Li, H.S., Fan, P., Xia, H.Y., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 66(1), 1–14 (2018)

    Article  Google Scholar 

  9. Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 1563–1564 (2003)

  10. Beach, G., Lomont, C., Cohen C.: Quantum image processing (QuIP). In: Proceedings of 32nd Applied Imagery Pattern Recognition Workshop. Washington (2003)

  11. Curtis, D., Meyer, D.A.: Towards quantum template matching. Quantum Communications and Quantum Imaging. SPIE’s 48th Annual Meeting. vol. 5161, pp. 134–141 (2004)

  12. Caraiman, S., Manta, V.I.: New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm. In: Proc. 6th ACM Conf. Comput. Frontier, Ischia, Italy. ACM, New York, pp. 81–88 (2009)

  13. Yan, F., Venegas-Andraca, S.E.: Quantum image processing. Springer (2020)

  14. Iliyasu, A.M., Le, P.Q., Dong, F.Y., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inform. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  15. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Song, X.H., Wang, S., El-Latif, A.A.A., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  18. Abd-El-Atty, B., El-Latif, A.A.A., Amin, M.: New quantum image steganography scheme with Hadamard transformation. In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics. vol. 533, pp. 342–352 (2016)

  19. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  Google Scholar 

  20. Song, X.H., Wang, H.Q., Venegas-Andraca, S.E., Abd El-Latif, A.A.: Quantum video encryption based on qubit-planes controlled-XOR operations and improved logistic map. Phys. A Stat. Mech. Appl. 537, 122660 (2020)

  21. Abd-El-Atty, B., Iliyasu, A.M., Alanezi, A., Abd El-latif, A.A.: Optical image encryption based on quantum walks. Optics Lasers Eng. 138, 106403 (2021)

  22. Abd El-Latif, A.A., Abd-El-Atty, B., Amin, M., Iliyasu, A.M.: Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Sci. Rep. 10(1), 1930 (2020)

    Article  ADS  Google Scholar 

  23. EL-Latif, A.A.A., Abd-El-Atty, B., Venegas-Andraca, S.E.: Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption. Phys. A Stat. Mech. Appl. 547, 123869 (2020)

  24. El-Latif, A.A.A., Abd-El-Atty, B., Mazurczyk, W., Fung, C., Venegas-Andraca, S.E.: Secure data encryption based on quantum walks for 5G Internet of things scenario. IEEE Trans. Netw. Serv. Manag. 17(1), 118–131 (2020)

    Article  Google Scholar 

  25. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceeding of the SPIE Conference Quantum Information and Computation, vol. 137–147 (2003)

  26. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  27. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  28. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  29. Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on quantum computers using the RGB\(\alpha \) color Space. In: Proceedings of the IEEE 7th International Symposium on Intelligent, Signal Processing, pp. 160–165 (2011)

  30. Wang, M., Lu, K., Zhang, Y., Wang, X.P.: FLPI: Representation of quantum images for log-polar coordinate. In: Fifth International Conference on Digital Image Processing, vol. 8878 (2013)

  31. Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Li, H.S., Chen, X., Xia, H.Y., Liang, Y., Zhou, Z.S.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

    Article  Google Scholar 

  33. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Sun, B., Iliyasu, A.M., Yan, F., Dong, F.Y., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Article  Google Scholar 

  35. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf Process. 16(2), 42 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. J. Adv. Comput. Intell. Intell. Inform. 15(6), 698–706 (2011)

    Article  Google Scholar 

  38. Taguchi, A., Hoshi, Y.: Color image enhancement in HSI color space without gamut problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(2), 792–795 (2015)

  39. Gong, L.H., He, X.T., Tan, R.C., et al.: Single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform. Int. J. Theor. Phys. 57(1), 59–73 (2018)

    Article  Google Scholar 

  40. Zhou, R.G.: Quantum Information Processing Technology and Algorithm Design. Science Press, Beijing (2013)

    Google Scholar 

  41. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  Google Scholar 

  42. The USC-SIPI Image Database. http://sipi.usc.edu/database/database.php

  43. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457 (1995)

    Article  ADS  Google Scholar 

  44. Wu, L., Zhang, J., Deng, W., et al.: Arnold transformation algorithm and anti-Arnold transformation algorithm. In: International Conference on Information Science and Engineering, pp. 1164–1167 (2009)

  45. Zou, J., Ward, R.K., Qi, D.: The generalized Fibonacci transformations and application to image scrambling. Acoustics Speech & Signal Processing. 3, 385–388 (2004)

  46. Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Ann. 36(1), 157–160 (1990)

    Article  MathSciNet  Google Scholar 

  47. Refregier, P., Javidi, B.: Optical image encryption using input plane and Fourier plane random encoding. Optical Implement. Inf. Process. 20(7), 767–769 (1995)

    Google Scholar 

  48. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process. 14, 1717–1734 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. Fijany, A., Williams, C.: Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quantph/9809004 (1998)

  50. Li, H.S., Fan, P., Peng, H.L., et al.: Multilevel 2-D quantum wavelet transforms. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3049509

    Article  Google Scholar 

  51. Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers. In: IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), Pula, Croatia, pp. 464–468 (2001)

Download references

Acknowledgements

This work is supported by the Postdoctoral Research Foundation of China (2018M631914), the Heilongjiang Provincial Postdoctoral Science Foundation (CN) (LBH-Z17042), the Training Program for Young Creative Talents of Ordinary Universities in Heilongjiang (UNPYSCT-2017078), and Mexico’s CONACyT (SNI number 41594). SEVA gratefully acknowledges the unconditional support of his family as well as the financial support of Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, and CONACyT (SNI No. 41594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Hua Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GL., Song, XH., Venegas-Andraca, S.E. et al. QIRHSI: novel quantum image representation based on HSI color space model. Quantum Inf Process 21, 5 (2022). https://doi.org/10.1007/s11128-021-03337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03337-0

Keywords

Navigation