Skip to main content
Log in

Implementation of quantum key distribution network simulation module in the network simulator NS-3

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The AIT QKD R10 is free for download w/o registration via git with “git clone http://sqt.ait.ac.at/git/qkd-public.git” [71].

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alleaume, R., Branciard, C., Bouda, J., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Langer, T., Lutkenhaus, N., Monyk, C., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: Using quantum key distribution for cryptographic purposes: a survey. Theor. Comput. Sci. 560(P1), 62–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Maurer, U.: Information-theoretically secure secret-key agreement by NOT authenticated public discussion. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1233, 209–225 (1997)

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8. New York (1984)

  5. Renner, R.: Security of quantum key distribution. Ph.D. thesis, Swiss Federal Institute of Technology Zurich (2005)

  6. Alleaume, R., Bouda, J., Branciard, C., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Langer, T., Leverrier, A., Lutkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: SECOQC White Paper on Quantum Key Distribution and Cryptography, p. 28. arXiv preprint arXiv:quant-ph/0701168 (2007)

  7. Elliott, C., Yeh, H.: DARPA quantum network testbed. Technical Report July, BBN Technologies Cambridge, New York, USA (2007)

  8. Xu, F.X., Chen, W., Wang, S., Yin, Z.Q., Zhang, Y., Liu, Y., Zhou, Z., Zhao, Y.B., Li, H.W., Liu, D., Han, Z.F., Guo, G.C.: Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54(17), 2991–2997 (2009)

    Article  Google Scholar 

  9. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., Yoshino, K.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Article  ADS  Google Scholar 

  10. Wang, S., Chen, W., Yin, Z.Q., Li, H.W., He, D.Y., Li, Y.H., Zhou, Z., Song, X.T., Li, F.Y., Wang, D., Chen, H., Han, Y.G., Huang, J.Z., Guo, J.F., Hao, P.L., Li, M., Zhang, C.M., Liu, D., Liang, W.Y., Miao, C.H., Wu, P., Guo, G.C., Han, Z.F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739 (2014)

    Article  ADS  Google Scholar 

  11. Yin, J., Cao, Y., Li, Y.H., Liao, S.K., Zhang, L., Ren, J.G., Al, W.Q.C., Liu, W.Y., Bo Li, H.D., Li, G.B., Lu, Q.M., Gong, Y.H., Xu, Y., Li, S.L., Li, F.Z., Yin, Y.Y., Jiang, Z.Q., Li, M., Jia, J.J., Ge Ren, D.H., Zhou, Y.L., Zhang, X.X., Wang, N., Chang, X., Zhu, Z.C., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Article  Google Scholar 

  12. Mehic, M., Fazio, P., Voznak, M., Chromy, E.: Toward designing a quantum key distrubution network. Adv. Electr Electron. Eng. 14(4), 413–420 (2016)

    Google Scholar 

  13. Henderson, T.R., Riley, G.F.: Network simulations with the ns-3 simulator. In: Proceedings of Sigcomm, pp. 527 (2006)

  14. Kollmitzer, C., Pivk, M. (eds.): Applied Quantum Cryptography. Lecture Notes in Physics, vol. 797. Springer, Berlin Heidelberg (2010). doi:10.1007/978-3-642-04831-9

  15. Dianati, M., Alleaume, R.: Architecture of the Secoqc quantum key distribution network. In: 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), IEEE, pp. 13–13, Jan 2007

  16. Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis of the public channel of quantum key distribution link. IEEE J. Quantum Electron. (2017, in press)

  17. Ciurana, A., Martinez-Mateo, J., Peev, M., Poppe, A., Walenta, N., Zbinden, H., Martin, V.: Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express 22(2), 1576–93 (2014)

    Article  ADS  Google Scholar 

  18. Aleksic, S., Winkler, D., Franzl, G., Poppe, A., Schrenk, B., Hipp, F.: Quantum key distribution over optical access networks. In: Proceedings of the 2013 18th European Conference on Network and Optical Communications and 2013 8th Conference on Optical Cabling and Infrastructure (NOC-OC&I), pp. 11–18. (2013)

  19. Alleaume, R., Roueff, F., Diamanti, E., Lutkenhaus, N.: Topological optimization of quantum key distribution networks. N. J. Phys. 11(7), 075002 (2009)

    Article  Google Scholar 

  20. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  21. Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.: Security of trusted repeater quantum key distribution networks. J. Comput. Secur. 18(1), 61–87 (2010)

    Article  Google Scholar 

  22. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  23. Dušek, M., Lütkenhaus, N., Hendrych, M.: Quantum cryptography. In: Progress in Optics, vol. 49, pp. 381–454 (2006). http://www.sciencedirect.com/science/article/pii/S0079663806490053

  24. Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96(2010), 2008–2011 (2010)

    Google Scholar 

  25. Korzh, B., Lim, C.C.W., Houlmann, R., Gisin, N., Li, M.J., Nolan, D., Sanguinetti, B., Thew, R., Zbinden, H.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9(3), 163–168 (2015)

    Article  ADS  Google Scholar 

  26. Sasaki, M.: Tokyo QKD network and the evolution to secure photonic network. In: CLEO:2011—Laser Applications to Photonic Applications, vol. 1., p. JTuC1. OSA, Washington, D.C. (2011)

  27. Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37(6), 1008 (2012)

    Article  ADS  Google Scholar 

  28. Dianati, M., All, R., Alléaume, R., Gagnaire, M., Shen, X.S.: Architecture and protocols of the future European quantum key distribution network. Secur. Commun. Netw. 1(1), 57–74 (2008)

    Article  Google Scholar 

  29. Mehic, M., Niemiec, M., Voznak, M.: Calculation of the key length for quantum key distribution. Elektron. ir Elektrotech. 21(6), 81–85 (2015)

    Article  Google Scholar 

  30. Elliott, C.: Building the quantum network. N. J. Phys. 4, 346 (2002)

    Article  Google Scholar 

  31. Abidin, A., Larsson, J.Å.:Security of Authentication with a Fixed Key in Quantum Key Distribution, p. 14 (2011)

  32. Portmann, C.: Key recycling in authentication. IEEE Trans. Inf. Theory 60(7), 4383–4396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hao, W., Zheng-Fu, H., Guang-Can, G., Pei-Lin, H.: The queueing model for quantum key distribution network. J. Phys. G G36(7), 25006 (2009)

    Google Scholar 

  34. Konig, S., Rass, S.: On the transmission capacity of quantum networks. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2(11), 9–16 (2011)

    Google Scholar 

  35. Rass, S., König, S.: Turning quantum cryptography against itself: how to avoid indirect eavesdropping in quantum networks by passive and active adversaries. Int. J. Adv. Syst. Meas. 5(1), 22–33 (2012)

    Google Scholar 

  36. Collins, D., Gisin, N., de Riedmatten, H.: Quantum relays for long-distance quantum cryptography. J. Mod. Opt. 52, 735–753 (2005)

    Article  ADS  MATH  Google Scholar 

  37. Dur, W., Briegel, H.J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59(1), 169–181 (1999)

    Article  ADS  MATH  Google Scholar 

  38. Yuan, Z.S., Chen, Y.A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454(7208), 1098–1101 (2008)

    Article  ADS  Google Scholar 

  39. Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC quantum-key-distribution network in Vienna. J. Quantum Inf. 6(2), 10 (2008)

    Article  Google Scholar 

  40. Sergienko, A.V. (ed.): Quantum Communications and Cryptography, Optical Science and Engineering, 1st edn. CRC Press, Boca Raton (2005)

  41. Marhoefer, M.,Wimberger, I., Poppe, A.: Applicability of Quantum Cryptography for Securing Mobile Communication Networks (2006). https://pdfs.semanticscholar.org/53a8/4df168139553023c95f11967b0e2462bd6bd.pdf

  42. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) Lecture Notes in Computer Science. Volume 4393 of Lecture Notes in Computer Science, pp. 610–621. Springer, Berlin (2007)

    Google Scholar 

  43. Schartner, P., Rass, S., Schaffer, M.: Quantum key management. In: Applied Cryptography and Network Security. InTech (2012)

  44. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. Sosp 32(1), 66 (2001)

    Google Scholar 

  45. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4), No. RFC 4271 (2005). http://www.rfc-editor.org/rfc/rfc4271.txt

  46. Labovitz, C., Ahuja, A., Wattenhofer, R., Venkatachary, S.: The impact of internet policy and topology on delayed routing convergence. In: Proceedings IEEE INFOCOM 2001, Conference on Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 1, pp. 537–546. (2001)

  47. Chun, B.G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly constructed overlay routing networks. In: IEEE INFOCOM 2004, IEEE, vol. 2., pp. 1329–1339. (2004)

  48. Lee, G.M., Choi, T.: Improving the interaction between overlay routing and traffic engineering. In: NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, vol. 4982, pp. 530–541. LNCS, Springer, Berlin (2008)

  49. Liu, Y., Zhang, H., Gong, W., Towsley, D.: On the interaction between overlay routing and underlay routing. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, vol. 4, pp. 2543–2553. (2005)

  50. Niemiec, M., Romanski, L., Swiety, M.: Quantum cryptography protocol simulator. In: Communications in Computer and Information Science, CCIS, vol. 149, pp. 286–292. (2011)

  51. Pereszlenyi, A.: Simulation of quantum key distribution with noisy channels. In: Proceedings of the 8th International Conference on Telecommunications, ConTEL, IEEE , vol. 1, pp. 203–210. (2005)

  52. Zhang, X., Wen, Q.: Object-oriented quantum cryptography simulation model. In: Third International Conference on Natural Computation, Number ICNC, IEEE, pp. 7–10. (2007)

  53. Zhao, S., De Raedt, H., Liu, B., Huang, Y.: Event-by-event simulation of quantum cryptography protocols. J. Comput. Theor. Nanosci. 5(7), 1251–1254 (2008)

    Article  Google Scholar 

  54. Buhari, A.: An efficient modeling and simulation of quantum key distribution protocols using OptiSystem. In: IEEE Symposium on Industrial Electronics and Applications (ISIEA), pp. 84–89. Bandung (2012)

  55. Mailloux, L.O., Morris, J.D., Grimaila, M.R., Hodson, D.D., Jacques, D.R., Colombi, J.M., Mclaughlin, C.V., Holes, J.A.: A modeling framework for studying quantum key distribution system implementation nonidealities. IEEE Access 3, 110–130 (2015)

    Article  Google Scholar 

  56. Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in network simulation. Computer 33(5), 59–67 (2000)

    Article  Google Scholar 

  57. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: Proceedings of the second ACM International Workshop on Principles of Mobile Computing—POMC ’02, vol. 1, p. 38. ACM Press, New York (2002)

  58. Andel, T., Yasinac, A.: On the credibility of manet simulations. Computer 39(7), 48–54 (2006)

    Article  Google Scholar 

  59. Altman, E., Jimenez, T.: NS Simulator for Beginners. In: Walrand, J. (ed.) Synthesis Lectures on Communication Networks, vol. 5. Morgan and Claypool Publishers (2012). doi:10.2200/S00397ED1V01Y201112CNT010

  60. Aguado, A., Martin, V., Lopez, D., Peev, M., Martinez-Mateo, J., Rosales, J., de la Iglesia, F., Gomez, M., Hugues-Salas, E., Lord, A., Nejabati, R.: Quantum-aware software defined networks. In: 6th International Conference on Quantum Cryptography (QCRYPT 2016), p. 3. QCrypt, Washington, DC (2016)

  61. Rass, S., Sandra, K.: Indirect Eavesdropping in Quantum Networks. In: The Fifth International Conference on Quantum, Nano and Micro Technologies, ICQNM, pp. 83–88. (2011)

  62. Mehic, M., Komosny, D., Mauhart, O., Voznak, M., Rozhon, J.: Impact of packet size variation in overlay quantum key distribution network. In: 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, Bosnia and Herzegovina, IEEE, pp. 1–6. (2016)

  63. Cederlöf, J.: Authentication in quantum key growing. Ph.D. thesis, Master Thesis, Linköping University (2005)

  64. Wehrle, K., Günes, M., Gross, J. (eds.): Modeling and Tools for Network Simulation, 1st edn. Springer-Verlag Berlin Heidelberg (2010). doi:10.1007/978-3-642-12331-3

  65. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Modeling and Tools for Network Simulation, pp. 15–34. Springer, Berlin (2010)

  66. Fall, K., Varadhan, K.: The Network Simulator (ns-2). http://www.isi.edu/nsnam/ns (2007)

  67. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst, M., Gautier, J.D., Gay, O., Gisin, N., Grangier, P., Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer, G., Länger, T., Legré, M., Lieger, R., Lodewyck, J., Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T., Maurhart, O., Monat, L., Nauerth, S., Page, J.B., Poppe, A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L., Sharpe, A.W., Shields, A.J., Stucki, D., Suda, M., Tamas, C., Themel, T., Thew, R.T., Thoma, Y., Treiber, A., Trinkler, P., Tualle-Brouri, R., Vannel, F., Walenta, N., Weier, H., Weinfurter, H., Wimberger, I., Yuan, Z.L., Zbinden, H., Zeilinger, A.: The SECOQC quantum key distribution network in Vienna. N. J. Phys. 11(7), 075001 (2009)

    Article  Google Scholar 

  68. Dodson, D., Fujiwara, M., Grangier, P., Hayashi, M., Imafuku, K., Kitayama, K.I., Kumar, P., Kurtsiefer, C., Lenhart, G., Luetkenhaus, N., et al.: Updating quantum cryptography report ver. 1. arXiv preprint arXiv:0905.4325 (2009)

  69. Cederlöf, J.: Larsson, Ja: Security aspects of the authentication used in quantum cryptography. IEEE Trans. Inf. Theory 54(4), 1735–1741 (2008). doi:10.1109/TIT.2008.917697

    Article  MathSciNet  MATH  Google Scholar 

  70. Dai, W.: Crypto++ library. Retrieved from http://www.cryptopp.com (2017)

  71. Maurhart, O., Pacher, C., Happe, A., Lor, T., Tamas, C., Poppe, A., Peev, M.: New release of an open source QKD software: design and implementation of new algorithms, modularization and integration with IPSec. In: Qcrypt 2013. (2013)

  72. Mehic, M., Partila, P., Tovarek, J., Voznak, M.: Calculation of key reduction for B92 QKD protocol. In Donkor, E., Pirich, A.R., Hayduk, M., (eds.) SPIE Sensing Technology + Applications, International Society for Optics and Photonics, p. 95001J. (2015)

  73. Fedrizzi, A., Poppe, A., Ursin, R., Lorünser, T., Peev, M., Länger, T., Zeilinger, A.: Practical quantum key distribution with polarization entangled photons. In: 2005 European Quantum Electronics Conference, EQEC ’05, vol. 16, p. 303. (2005)

  74. Stavroulakis, P., Stamp, M.: Handbook of Information and Communication Security. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  75. Mink, A., Tang, X., Ma, L., Nakassis, T., Hershman, B., Bienfang, J.C., Su, D., Boisvert, R., Clark, C.W., Williams, C.J.: High speed quantum key distribution system supports one-time pad encryption of real-time video. Proc. SPIE 6244, 62440M-1–7 (2006)

    Google Scholar 

  76. Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13(4), 1031–1037 (2007)

    Article  Google Scholar 

  77. Mirza, A., Petruccione, F.: Realizing long-term quantum cryptography. J. Opt. Soc. Am. B 27(6), A185 (2010)

    Article  ADS  Google Scholar 

  78. Langer, T.: The practical application of quantum key distribution. Ph.D. thesis, University of Lausanne (2013)

  79. Chakeres, I.D., Belding-Royer, E.M.: AODV Routing Protocol Implementation Design. In: Proceedings of 24th International Conference on Distributed Computing Systems Workshops, Hachioji, Tokyo, Japan, 23–24 March 2004, pp. 698–703. IEEE (2004)

  80. Fazio, P., De Rango, F., Sottile, C.: An on demand interference aware routing protocol for VANETS. J. Netw. 7(11), 1728–1738 (2012)

    Google Scholar 

  81. He, G.: Destination-Sequenced Distance Vector (DSDV) Protocol, pp. 1–9. Networking Laboratory, Helsinki University of Technology (2002). http://www.netlab.tkk.fi/opetus/s38030/k02/Papers/03-Guoyou.pdf

  82. Mehic, M., Fazio, P., Voznak, M., Partila, P., Komosny, D., Tovarek, J., Chmelikova, Z.: On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks. Int. Soc. Opt. Photon. 98480F (2016)

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their comments and suggestions that helped improve the quality of this paper. The research received a financial support from the SGS Grant No. SP2017/174, VSB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miralem Mehic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehic, M., Maurhart, O., Rass, S. et al. Implementation of quantum key distribution network simulation module in the network simulator NS-3. Quantum Inf Process 16, 253 (2017). https://doi.org/10.1007/s11128-017-1702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1702-z

Keywords

Navigation