Skip to main content
Log in

Modeling and simulation of practical quantum secure communication network

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As the quantum key distribution (QKD) technology supporting the point-to-point application matures, the need to build the quantum secure communication network (QSCN) to guarantee the security of a large scale of nodes becomes urgent. Considering the project time and expense control, it is the first choice to build the QSCN based on an existing classical network. Suitable modeling and simulation are very important to construct a QSCN successfully and efficiently. In this paper, a practical QSCN model, which can reflect the network state well, is proposed. The model considers the volatile traffic demand of the classical network and the real key generation capability of the QKD devices, which can enhance the accuracy of simulation to a great extent. In addition, two unique QSCN performance indicators, ITS (information-theoretic secure) communication capability and ITS communication efficiency, are proposed in the model, which are necessary supplements for the evaluation of a QSCN except for those traditional performance indicators of classical networks. Finally, the accuracy of the proposed QSCN model and the necessity of the proposed performance indicators are verified by plentiful simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)

    Article  ADS  MATH  Google Scholar 

  5. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In: Donkor, E.J., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information and Computation III, vol. 5815, pp. 138–149. International Society for Optics and Photonics (2005). https://doi.org/10.1117/12.606489

  6. Elliott, C., Yeh, H.: Darpa quantum network testbed. Technical report, BBN Technologies, Cambridge, MA (2007)

  7. Alleaume, R., Roueff, F., Diamanti, E., Lütkenhaus, N.: Topological optimization of quantum key distribution networks. New J. Phys. 11(7), 075002 (2009)

    Article  ADS  Google Scholar 

  8. Dianati, M., Alléaume, R.: Architecture of the SECOQC quantum key distribution network. In: 2007 first international conference on quantum, nano, and micro technologies ICQNM’07, IEEE, pp. 13–13 (2007)

  9. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Article  ADS  Google Scholar 

  10. Chen, L.K., Yong, H.L., Xu, P., Yao, X.C., Xiang, T., Li, Z.D., Liu, C., Lu, H., Liu, N.L., Li, L., et al.: Experimental nested purification for a linear optical quantum repeater. Nat. Photonics 11(11), 695 (2017)

    Article  ADS  Google Scholar 

  11. Yuan, Z., Plews, A., Takahashi, R., Doi, K., Tam, W., Sharpe, A., Dixon, A., Lavelle, E., Dynes, J., Murakami, A., et al.: 10-mb/s quantum key distribution. J. Lightwave Technol. 36(16), 3427–3433 (2018)

    Article  ADS  Google Scholar 

  12. Dixon, A.R., Yuan, Z., Dynes, J., Sharpe, A., Shields, A.: Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96(16), 161102 (2010)

    Article  ADS  Google Scholar 

  13. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  14. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43 (2017)

    Article  ADS  Google Scholar 

  15. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  ADS  Google Scholar 

  16. Razavi, M.: An introduction to quantum communications networks. 2053-2571. Morgan & Claypool Publishers (2018). https://doi.org/10.1088/978-1-6817-4653-1

  17. Watanabe, S., Matsumoto, R., Uyematsu, T.: Security of quantum key distribution protocol with two-way classical communication assisted by one-time pad encryption. arXiv:quant-ph/0608030 (2006)

  18. Dianati, M., Alléaume, R., Gagnaire, M., Shen, X.: Architecture and protocols of the future european quantum key distribution network. Secur. Commun. Netw. 1(1), 57–74 (2008)

    Article  Google Scholar 

  19. Diamanti, E., Lo, H.K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016)

    Article  Google Scholar 

  20. Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19(2), 115–118 (2015)

    Article  ADS  Google Scholar 

  21. Li, J., Chen, X., Sun, X., Li, Z., Yang, Y.: Quantum network coding for multi-unicast problem based on 2d and 3d cluster states. Sci. China Inf. Sci. 59(4), 042301 (2016)

    Article  Google Scholar 

  22. Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Maurhart, O., Pacher, C., Happe, A., Lor, T., Tamas, C., Poppe, A., Peev, M.: New release of an open source QKD software: design and implementation of new algorithms, modularization and integration with IPSec. In: Proceedings of Qcrypt Citeseer (2013)

  24. Yang, C., Zhang, H., Su, J.: The qkd network: model and routing scheme. J. Mod. Opt. 64(21), 2350–2362 (2017)

    Article  ADS  Google Scholar 

  25. Mehic, M., Maurhart, O., Rass, S., Voznak, M.: Implementation of quantum key distribution network simulation module in the network simulator ns-3. Quantum Inf. Process. 16(10), 253 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.: Security of trusted repeater quantum key distribution networks. J. Comput. Secur. 18(1), 61–87 (2010)

    Article  Google Scholar 

  27. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  28. Henderson, T.R., Lacage, M., Riley, G.F., Dowell, C., Kopena, J.: Network simulations with the ns-3 simulator. SIGCOMM Demonstr. 14(14), 527 (2008)

    Google Scholar 

  29. Gelfond, R., Berzanskis, A.: Key management and user authentication for quantum cryptography networks. US Patent 8,340,298, (2012)

  30. Poppe, A., Peev, M., Maurhart, O.: Outline of the secoqc quantum-key-distribution network in Vienna. Int. J. Quantum Inf. 6(02), 209–218 (2008)

    Article  Google Scholar 

  31. Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis of the public channel of quantum key distribution link. IEEE J. Quantum Electron. 53(5), 1–8 (2017)

    Article  Google Scholar 

  32. McHale, J.F.: Communication server apparatus and method. US Patent 5,668,857, (1997)

  33. Weigle, M.C., Adurthi, P., Hernández-Campos, F., Jeffay, K., Smith, F.D.: Tmix: a tool for generating realistic tcp application workloads in ns-2. ACM SIGCOMM Comput. Commun. Rev. 36(3), 65–76 (2006)

    Article  Google Scholar 

  34. Varet, A., Larrieu, N.: How to generate realistic network traffic? In: 2014 IEEE 38th annual computer software and applications conference, pp. 299–304. IEEE (2014)

  35. Bonelli, N., Giordano, S., Procissi, G., Secchi, R.: Brute: A high performance and extensible traffic generator. In: Proceedings of SPECTS, pp. 839–845 (2005)

  36. Ammar, D., Begin, T., Guerin-Lassous, I.: A new tool for generating realistic internet traffic in ns-3. In: Proceedings of the 4th international ICST conference on simulation tools and techniques, pp. 81–83 (2011)

  37. Botta, A., Dainotti, A., Pescapé, A.: A tool for the generation of realistic network workload for emerging networking scenarios. Comput. Netw. 56(15), 3531–3547 (2012)

    Article  Google Scholar 

  38. Gardiner, C.: Stochastic Methods, vol. 4. Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Tamaki, K., Lo, H.K., Wang, W., Lucamarini, M.: Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. arXiv:1805.05511 (2018)

  40. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: International symposium on information theory, 2004. ISIT 2004. Proceedings, p. 136. IEEE (2004)

  41. Tang, Z., Wei, K., Bedroya, O., Qian, L., Lo, H.K.: Experimental measurement-device-independent quantum key distribution with imperfect sources. Phys. Rev. A 93(4), 042308 (2016)

    Article  ADS  Google Scholar 

  42. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)

    Article  ADS  Google Scholar 

  43. Tang, Y.L., Yin, H.L., Zhao, Q., Liu, H., Sun, X.X., Huang, M.Q., Zhang, W.J., Chen, S.J., Zhang, L., You, L.X., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011024 (2016)

    Google Scholar 

  44. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400 (2018)

    Article  ADS  Google Scholar 

  45. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98(1), 010503 (2007)

    Article  ADS  Google Scholar 

  46. Zhao, Y., Qi, B., Ma, X., Lo, H.K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96(7), 070502 (2006)

    Article  ADS  Google Scholar 

  47. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006)

    Article  ADS  Google Scholar 

  48. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  49. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  50. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  51. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    Article  ADS  Google Scholar 

  52. Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  53. Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)

    Article  ADS  Google Scholar 

  54. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  55. Yin, H.L., Cao, W.F., Fu, Y., Tang, Y.L., Liu, Y., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions. Opt. Lett. 39(18), 5451–5454 (2014)

    Article  ADS  Google Scholar 

  56. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing (dsdv) for mobile computers. In: ACM SIGCOMM computer communication review. vol. 24, pp. 234–244. ACM (1994)

    Article  Google Scholar 

  57. Almes, G., Kalidindi, S., Zekauskas, M., Morton, A.: A one-way delay metric for ip performance metrics (ippm). Technical report (2016)

  58. Burgess, N.: Rfc 2544 testing of ethernet services in telecom networks. White paper (2004)

  59. Evans, S.C., Pearlman, M.R., Hartman, M.J., Rothe, A., Leiva, M.A., Egan, M.W.: Routing cost based network congestion control for quality of service. US Patent 7,489,635, (2009)

  60. Dodson, D., Fujiwara, M., Grangier, P., Hayashi, M., Imafuku, K., Kitayama, K.i., Kumar, P., Kurtsiefer, C., Lenhart, G., Luetkenhaus, N., et al.: Updating quantum cryptography report ver. 1. arXiv:0905.4325 (2009)

  61. Cederlof, J., Larsson, J.Å.: Security aspects of the authentication used in quantum cryptography. IEEE Trans. Inf. Theory 54(4), 1735–1741 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Numbers 61771168, 61702224), Space Science and Technology Advance Research Joint Funds (6141B061 10105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Q., Han, Q. et al. Modeling and simulation of practical quantum secure communication network. Quantum Inf Process 18, 278 (2019). https://doi.org/10.1007/s11128-019-2394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2394-3

Keywords

Navigation