Skip to main content
Log in

Practical entanglement concentration of nonlocal polarization-spatial hyperentangled states with linear optics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present some different hyperentanglement concentration protocols (hyper-ECPs) for nonlocal N-photon systems in partially polarization-spatial hyperentangled states with known parameters, resorting to linear optical elements only, including those for hyperentangled Greenberger–Horne–Zeilinger-class states and the ones for hyperentangled cluster-class states. Our hyper-ECPs have some interesting features. First, they require only one copy of nonlocal N-photon systems and do not resort to ancillary photons. Second, they work with linear optical elements, neither Bell-state measurement nor two-qubit entangling gates. Third, they have the maximal success probability with only a round of entanglement concentration, not repeating the concentration process some times. Fourth, they resort to some polarizing beam splitters and wave plates, not unbalanced beam splitters, which make them more convenient in experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. A 68, 557 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  11. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  12. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  13. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. arXiv:1609.09184

  14. Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64, 160307 (2015)

    Google Scholar 

  15. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  16. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  17. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  19. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  20. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  21. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  22. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  23. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  25. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  26. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  27. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  29. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  30. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  31. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  32. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  34. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093 (2013)

    Article  ADS  Google Scholar 

  35. Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process. 14, 1265–1277 (2015)

    Article  ADS  MATH  Google Scholar 

  36. Cao, C., Wang, T.J., Zhang, R., Wang, C.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace. Laser Phys. Lett. 12, 036001 (2015)

    Article  ADS  Google Scholar 

  37. Wang, C., Shen, W.W., Mi, S.C., Zhang, Y., Wang, T.J.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bull. 60, 2016–2021 (2015)

    Article  Google Scholar 

  38. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  39. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)

    Article  ADS  MATH  Google Scholar 

  40. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58, 040303 (2015)

    Google Scholar 

  41. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305–1320 (2015)

    Article  ADS  MATH  Google Scholar 

  42. Maimaiti, W., Li, Z., Chesi, S., Wang, Y.D.: Entanglement concentration with strong projective measurement in an optomechanical system. Sci. China Phys. Mech. Astron. 58, 050309 (2015)

    Article  Google Scholar 

  43. Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n+1)-qubit states. Quantum Inf. Process. 14, 4523–4536 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 14, 4131–4146 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process. 15, 1669–1687 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59, 100315 (2016)

    Article  Google Scholar 

  47. Sheng, Y.B., Zhao, S.Y., Liu, J., Wang, X.F., Zhou, L.: Arbitrary four-photon cluster state concentration with cross-Kerr nonlinearity. Int. J. Theor. Phys. 54, 1292–1303 (2015)

    Article  MATH  Google Scholar 

  48. Liu, H.J., Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Inf. Process. 14, 2909–2928 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Du, F.F., Long, G.L.: Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities. Quantum Inf. Process. 16, 26 (2017)

    Article  ADS  Google Scholar 

  50. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46–68 (2017)

    Article  Google Scholar 

  51. Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44, 2173 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Yang, T., Zhang, Q., Zhang, J., Yin, J., Zhao, Z., Żukowski, M.: All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement. Phys. Rev. Lett. 95, 240406 (2005)

    Article  ADS  Google Scholar 

  53. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  54. Barbieri, M., Cinelli, C., Mataloni, P., De Martini, F.: Polarization-momentum hyperentangled states: realization and characterization. Phys. Rev. A 72, 052110 (2005)

    Article  ADS  Google Scholar 

  55. Ceccarelli, R., Vallone, G., De Martini, F., Mataloni, P., Cabello, A.: Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett. 103, 160401 (2009)

    Article  ADS  Google Scholar 

  56. Vallone, G., Ceccarelli, R., De Martini, F., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Bhatti, D., von Zanthier, J., Agarwal, G.S.: Entanglement of polarization and orbital angular momentum. Phys. Rev. A 91, 062303 (2015)

    Article  ADS  Google Scholar 

  58. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Article  ADS  Google Scholar 

  59. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)

    Article  ADS  Google Scholar 

  60. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)

    Article  ADS  Google Scholar 

  61. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  62. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664 (2012)

    Article  ADS  Google Scholar 

  63. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  64. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    Article  ADS  Google Scholar 

  65. Li, X.H., Ghose, S.: Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 93, 022302 (2016)

    Article  ADS  Google Scholar 

  66. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444 (2016)

    Article  ADS  Google Scholar 

  67. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)

    Article  Google Scholar 

  68. Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58, R2623 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  69. Walborn, S.P., Pádua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  70. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  71. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  72. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  73. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  74. Du, F.F., Li, T., Long, G.L.: Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction. Ann. Phys. 375, 105 (2016)

    Article  ADS  Google Scholar 

  75. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23, 9284 (2015)

    Article  ADS  Google Scholar 

  76. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)

    Article  ADS  Google Scholar 

  77. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  78. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23, 3550 (2015)

    Article  ADS  Google Scholar 

  79. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    Article  ADS  Google Scholar 

  80. Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  81. Cao, C., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Ann. Phys. 369, 128 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  82. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967–1978 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  85. Soudagar, Y., Bussières, F., Berlín, G., Lacroix, S., Fernandez, J.M., Godbout, N.: Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B 24, 226 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  86. Xing, H., Liu, Y.M., Xie, C.M., Ji, Q.B., Zhang, Z.J.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553–1562 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128–1132 (2015)

    Article  Google Scholar 

  88. Naseri, M., Raji, M.A., Hantehzadeh, M.R., Farouk, A., Boochani, A., Solaymani, S.: A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Inf. Process. 14, 4279–4295 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Lu, Q.C., Liu, D.P., He, Y.H., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Linear-optics-based bidirectional controlled remote state preparation via five-photon cluster-type states for quantum communication network. Int. J. Theor. Phys. 55, 535–547 (2016)

    Article  MATH  Google Scholar 

  90. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    Article  MATH  Google Scholar 

  91. Liu, Z.H., Chen, H.W., Liu, W.J.: Cryptanalysis of controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Int. J. Theor. Phys. 55, 4564–4576 (2016)

    Article  MATH  Google Scholar 

  92. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  93. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  94. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11674033 and the Fundamental Research Funds for the Central Universities under Grant No. 2015KJJCA01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Guo Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZH., Wu, XY., Yu, WX. et al. Practical entanglement concentration of nonlocal polarization-spatial hyperentangled states with linear optics. Quantum Inf Process 16, 141 (2017). https://doi.org/10.1007/s11128-017-1595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1595-x

Keywords

Navigation