Skip to main content
Log in

A survey of quantum image representations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum image processing (QIMP) is devoted to utilizing the quantum computing technologies to capture, manipulate, and recover quantum images in different formats and for different purposes. Logically, percolating this requires that representations to encode images based on the quantum mechanical composition of any potential quantum computing hardware be conjured. This paper gathers the current mainstream quantum image representations (QIRs) and discusses the advances made in the area. Some similarities, differences, and likely applications for some of the available QIRs are reviewed. We believe this compendium will provide the readership an overview of progress witnessed in the area of QIMP while also simulating further interest to pursue more advanced research in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmad, A., Chandler, J.: Photogrammetric capabilities of the kodak dc40, dcs420, and dcs460 digital cameras. Photogramm. Rec. 16(94), 605–615 (1999)

    Article  Google Scholar 

  2. Akhshani, A., Akhavan, A., Lim, S., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Batouche, M., Meshoul, S., Hussaini, A.: Image processing using quantum computing and reverse emergence. Int. J. Nano Biomater. 2(1–2), 136–142 (2009)

    Article  Google Scholar 

  4. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (quip). In: Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, pp. 39–44 (2003)

  5. Benatchba, K., Koudil, M., Yacine, B., Benkhelat, N.: Image segmentation using quantum genetic algorithms. In: Conference of the IEEE Industrial Electronics Society, pp. 3556–3563 (2006)

  6. Bhattacharyya, S., Pal, P., Bhowmick, S.: Binary image denoising using a quantum multilayer self organizing neural network. Appl. Soft Comput. 24, 717–729 (2014)

    Article  Google Scholar 

  7. Bi, X., Jin, G.: Image segmentation algorithm based on quantum immune programming. In: IEEE International Conference on Integration Technology, pp. 403–407 (2007)

  8. Borkin, M., Vo, A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., Pfister, H.: What makes a visualization memorable? IEEE Trans. Visual Comput. Graphics 19(12), 2306–2315 (2013)

    Article  Google Scholar 

  9. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  10. Caraiman, S., Manta, V.: Image processing using quantum computing. In: 16th International Conference on System Theory, Control and Computing (ICSTCC), pp. 1–6 (2012)

  11. Caraiman, S., Manta, V.: Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 13(3), 77–84 (2013)

    Article  Google Scholar 

  12. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theoret. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caraiman, S., Manta, V.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  14. Center for Distributed Quantum Information, US Army Research Laboratory. http://www.arl.army.mil/www/default.cfm?page=2424

  15. Corp., S.: Tech specs of the Sony Cyber-shot DSC-HX90V camera. http://www.dpreview.com/products/sony/compacts/sony_dschx90v/ (2015)

  16. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

  17. Dougherty, G.: Digital Image Processing for Medical Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  18. Dubey, R., Singh, R., Jain, S., Jadon, R.: Quantum methodology for edge detection: a compelling approach to enhance edge detection in digital image processing. In: 5th International Conference-Confluence the Next Generation Information Technology Summit, pp. 631–636 (2014)

  19. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.: Medical image processing on the GPu—past, present and future. Med. Image Anal. 17(8), 1073–1094 (2013)

    Article  Google Scholar 

  20. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  21. Fijany, A., Williams, C.: Quantum wavelet transforms: fast algorithms and complete circuits. In: 1st NASA International Conference on Quantum Computing and Quantum Communications, pp. 10–33 (1998)

  22. García García, J., Venegas-Andraca, S.: Region-based approach for the spectral clustering nyström approximation with an application to burn depth assessment. Mach. Vis. Appl. 6(2), 353–368 (2015)

    Article  Google Scholar 

  23. Georgescu, I., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153–185 (2014)

    Article  ADS  Google Scholar 

  24. Goggin, M., Sundaram, B., Milonni, P.: Quantum logistic map. Phys. Rev. A 41, 5705–5708 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  25. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  26. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  27. Hales, L., Hallgren, S.: An improved quantum fourier transform algorithm and applications. In: 41st Annual Symposium on Foundations of Computer science, pp. 515–525 (2000)

  28. Hu, B., Huang, X., Zhou, R., Wei, Y., Wan, Q., Pang, C.: A theoretical framework for quantum image representation and data loading scheme. Sci. China Info. Sci. 57(3), 1–11 (2014)

    Article  Google Scholar 

  29. Hu, S.: Quantum neural network for image watermarking. Adv. Neural Netw. ISNN 2004(3174), 669–674 (2004)

    Google Scholar 

  30. Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  Google Scholar 

  31. Iliyasu, A.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  32. Iliyasu, A., Le, P., Dong, F., Hirota, K.: A framework for quantum movie representation and production. In: Proceedings of the 2nd International Conference on Quantum Information and Technology (ICQIT 2010), pp. 17–17 (2010)

  33. Iliyasu, A., Le, P., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Info. 9(6), 1459–1497 (2011)

    Article  MATH  Google Scholar 

  34. Iliyasu, A., Le, P., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iliyasu, A., Le, P., F., D., Hirota, K.: Restricted geometric transformations and their applications for quantum image watermarking and authentication. In: Proceeding of the 10th Asian Conference on Quantum Information Sciences (AQIS 2010), pp. 96–97 (2010)

  36. Iliyasu, A., Le, P., Yan, F., Sun, B., Garcia, J., Dong, F., Hirota, K.: Insights into the viability of using available photonic quantum technologies for efficient image and video processing applications. Int. J. Unconv. Comput. 9(1–2), 125–151 (2013)

    Google Scholar 

  37. Iliyasu, A., Le, P., Yan, F., Sun, B., Garcia, J., Dong, F., Hirota, K.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innovative Comput. Appl. 5(2), 85–101 (2013)

    Article  Google Scholar 

  38. Iliyasu, A., Venegas-Andraca, S., Yan, F., Sayed, A.: Hybrid quantum-classical protocol for storage and retrieval of discrete-valued information. Entropy 16(6), 3537–3551 (2014)

    Article  ADS  Google Scholar 

  39. Ireland, J., Young, A.: Solar Image Analysis and Visualization. Springer, Berlin (2009)

    Book  Google Scholar 

  40. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on moir\(\acute{e}\) pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  Google Scholar 

  42. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  43. Jiang, N., Wang, L., Wu, W.: Quantum hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  44. Jiang, N., Wu, W., Wang, L.: The quantum realization of arnold and fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Jiang, N., Wu, W., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  46. Jiang, N., Zhao, N., Wang, L.: Lsb based quantum image steganography algorithm. Int. J. Theor. Phys. (2015). doi:10.1007/s10773-015-2640-0

    Google Scholar 

  47. Klappenecker, A., Rotteler, M.: Discrete cosine transforms on quantum computers. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, pp. 464–468 (2001)

  48. Lanzagorta, M.: Quantum Radar. Morgan and Claypool, Los Altos, CA (2011)

    Google Scholar 

  49. Latorre, J.: Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)

  50. Le, P., Dong, F., Hirota, K.: Flexible representation of quantum images and its computational complexity analysis. In: Proceedings of the 10th Symposium on Advanced Intelligent Systems (ISIS 2009), pp. 146–149 (2009)

  51. Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Le, P., Iliyasu, A., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Le, P., Iliyasu, A., Dong, F., Hirota, K.: Efficient colour transformations on quantum image. J. Adv. Comput. Intell. Intell. Info. 15(6), 698–706 (2011)

    Google Scholar 

  54. Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. N. Adv. Intell. Signal Process. Stud. Comput. Intell. 372, 179–202 (2011)

    Article  Google Scholar 

  55. Le, P., Iliyasu, A., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theoret. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, C., Han, Z.: The new evolution of image encryption techniques. Inf. Control 32(4), 339–343 (2003)

    Google Scholar 

  57. Li, H., Li, M.: A new method of image compression based on quantum neural network. In: 2010 International Conference of Information Science and Management Engineering, pp. 567–570 (2010)

  58. Li, H., Zhu, Q., Lan, S., Shen, C., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Li, H., Zhu, Q., Zhou, R., Li, M., Song, L., Ian, H.: Multi-dimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  60. Li, H., Zhu, Q., Zhou, R., Song, L., Yang, X.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Li, Y., Feng, S., Zhang, X., Jiao, L.: Sar image segmentation based on quantum-inspired multiobjective evolutionary clustering algorithm. Info. Process. Lett. 114(6), 287–293 (2014)

    Article  MATH  Google Scholar 

  62. Li, Y., Shi, H., Jiao, L., Liu, R.: Quantum evolutionary clustering algorithm based on watershed applied to sar image segmentation. Neurocomputing 87, 90–98 (2012)

    Article  Google Scholar 

  63. Liu, C., Sun, D.: A bayesian approach to adaptive video super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 209–216 (2011)

  64. Lomont, C.: Quantum Convolution and Quantum Correlation Algorithms are Physically Impossible. arXiv:quant-ph/0309070 (2003)

  65. Ma, L., Lu, J.: Construction of controlled quantum counter. Chin. J. Quantum Electron. 20(1), 47–50 (2003)

    MathSciNet  Google Scholar 

  66. Mastriani, M.: Quantum boolean image denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  67. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, UK (2000)

    MATH  Google Scholar 

  68. Oliveira, D., Ramos, R.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7(1), 17–26 (2007)

    MathSciNet  Google Scholar 

  69. Pagiamtzis, K., Sheikholeslami, A.: Content-addressable memory (CAM) circuits and architectures: a tutorial and survey. IEEE J. Solid-State Circuits 41(3), 712–727 (2006)

    Article  Google Scholar 

  70. Pang, C.: Loading n-Dimensional Vector into Quantum Registers from Classical Memory with o(logn) Steps. arXiv:quant-ph/0612061v3 (2007)

  71. Pang, C., Ding, C., Hu, B.: Quantum Pattern Recognition of Classical Signal. arXiv:0707.0936v2 [quant-ph] (2007)

  72. Pang, C., Zhou, Z., Guo, G.: A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression. arXiv:cs/0605002v3 [cs.MM] (2006)

  73. Pang, C., Zhou, Z., Guo, G.: Quantum Discrete Cosine Transform for Image Compression. arXiv:quant-ph/0601043v2 (2006)

  74. Perdomo, A., Venegas-Andraca, S., Aspuru-Guzik, A.: A study of heuristic guesses for adiabatic quantum computation. Quantum Inf. Process. 10(1), 33–52 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Quantum Information Sciences Program, Office of Naval Research, US Navy. http://www.onr.navy.mil/en/Science-Technology/Departments/Code-31/All-Programs/312-Electronics-Sensors/Quantum-Information-Science.aspx

  76. Seyedzadeh, S., Norouzi, B., Mosavi, M., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)

    Article  MathSciNet  Google Scholar 

  77. Shah, V.: Image processing and its military applications. Defense Sci. J. 37(4), 457–478 (1987)

    Article  Google Scholar 

  78. Shields, A.: Semiconductor quantum light sources. Nat. Photonics 1, 215–223 (2007)

    Article  ADS  Google Scholar 

  79. Shih, F.: Image processing and pattern recognition: fundamentals and techniques. Wiley-IEEE Press, New York (2010)

    Book  Google Scholar 

  80. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  81. Skolnik, M.: Radar Handbook. McGraw-Hill, New York (2008)

    Google Scholar 

  82. Song, X., Wang, S., Abd El-Latif, A., Niu, X.: Dynamic watermarking scheme for quantum images based on hadamard transform. Multimedia Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  83. Song, X., Wang, S., Abd El-Latif, A., Niu, X.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Song, X., Wang, S., Liu, S., Abd El-Latif, A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(2), 3689–3706 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. Song, X., Wang, S., Niu, X.: Multi-channel quantum image representation based on phase transform and elementary transformations. J. Info. Hiding Multimedia Signal Process. 5(4), 574–585 (2014)

    Google Scholar 

  86. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404–417 (2013)

    Google Scholar 

  87. Sun, B., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Al-Asmari, A., Hirota, K.: Multi-channel information operations on quantum images. J. Adv. Comput. Intell. Intell. Info. 18(4) (2014)

  88. Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB\(\alpha \) color space. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)

  89. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  90. Talbi, H., Batouche, M., Draa, A.: A quantum-inspired genetic algorithm for multi-source affine image registration. Image Anal. Recogn. 3211, 147–154 (2004)

    Article  Google Scholar 

  91. Talbi, H., Draa, A., Batouche, M.: A genetic quantum algorithm for image registration. In: International Conference on Information and Communication Technologies: From Theory to Applications, pp. 395–396 (2004)

  92. Tseng, C., Hwang, T.: Quantum circuit design of \(8\times 8\) discrete cosine transforms using its fast computation flow graph. In: IEEE International Symposium on Circuits and Systems, pp. 828–831 (2005)

  93. Varney, N., Diskin, Y., Asari, V.: 3d object classification in uncalibrated structure from motion models. In: Proceedings of Imaging and Applied Optics 2015, session Advances for Military Imaging, OSA Technical Digest (2015)

  94. Venegas-Andraca, S.: Introductory words: special issue on quantum image processing published by quantum information processing. Quantum Inf. Process. 14(5), 1535–1537 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  95. Venegas-Andraca, S., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  96. Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, Vol. 5105, 134–147 (2003)

  97. Venegas-Andraca, S., Lanzagorta, M., Uhlmann, J.: Maritime applications of quantum computation. In: Proceedings of the 2015 Marine Technology Society and IEEE Conference Oceans’15 (2015)

  98. Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  99. Wang, D., Liu, Z., Zhu, W., Li, S.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  100. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  101. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (lsqb) information hiding algorithm for quantum images. Measurement 73, 352–359 (2015)

    Article  Google Scholar 

  102. Wang, S., Song, X., Niu, X.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. Vol II Adv. Intell. Syst. Comput. 298, 243–250 (2014)

    Google Scholar 

  103. Wang, X., Liu, G., Li, L., Liu, Z.: A novel quantum-inspired algorithm for edge detection of sonar image. In: Proceedings of the 33rd Chinese Control Conference, pp. 4836–4841 (2014)

  104. Weinstein, Y., Pravia, M., Fortunato, E., Lloyd, S., Cory, D.: Implementation of the quantum fourier transform. Phys. Rev. Lett. 86(9), 1889–1891 (2001)

    Article  ADS  Google Scholar 

  105. Yan, F.: Quantum Computation Based Image Data Searching, Image Watermarking, and Representation of Emotion Space. Ph.D Thesis, Tokyo Institute of Technology, Japan (2014)

  106. Yan, F., Iliyasu, A., Fatichah, C., Tangel, M., Betancourt, J., Dong, F., Hirota, K.: Quantum image searching based on probability distributions. J. Quantum Info. Sci. 2(3), 55–60 (2012)

    Article  Google Scholar 

  107. Yan, F., Iliyasu, A., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  108. Yan, F., Iliyasu, A., Khan, A., Yang, H.: Moving target detection in multi-channel quantum video. In: IEEE 9th International Symposium on Intelligent Signal Processing (WISP), pp. 1–5 (2015)

  109. Yan, F., Iliyasu, A., Le, P., Sun, B., Dong, F., Hirota, K.: A parallel comparison of multiple pairs of images on quantum computers. Int. J. Innov. Comput. Appl. 5(4), 199–212 (2013)

    Article  Google Scholar 

  110. Yan, F., Iliyasu, A., Liu, Z., Salama, A., Dong, F., Hirota, K.: Bloch sphere-based representation for quantum emotion space. J. Adv. Comput. Intell. Intell. Info. 19(1), 134–142 (2015)

    Google Scholar 

  111. Yan, F., Iliyasu, A., Sun, B., Venegas-Andraca, S., Dong, F., Hirota, K.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  112. Yan, F., Iliyasu, A., Venegas-Andraca, S., Yang, H.: Video encryption and decryption on quantum computers. Int. J. Theor. Phys. 54(8), 2893–2904 (2015)

    Article  MathSciNet  Google Scholar 

  113. Yan, F., Le, P., Iliyasu, A., Sun, B., Garcia, J., Dong, F., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–6 (2012)

  114. Yang, Y., Jia, X., Sun, S., Pan, Q.: Quantum cryptographic algorithm for color images using quantum fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)

    Article  Google Scholar 

  115. Yang, Y., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  116. Yang, Y., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  117. Yang, Y., Xu, P., Tian, J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13(9), 1931–1936 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  118. Youssry, A., El-Rafei, A., Elramly, S.: A quantum mechanics-based framework for image processing and its application to image segmentation. Quantum Inf. Process. 14(10), 3613–3638 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  119. Yuan, S., Mao, X., Li, T., Xue, Y., Chen, L., Xiong, Q.: Quantum morphology operations based on quantum representation model. Quantum Inf. Process. 14(5), 1625–1645 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  120. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  121. Zhang, W., Gao, F., Liu, B., Jia, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  122. Zhang, W., Gao, F., Liu, B., Wen, Q., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  123. Zhang, X., Wang, M., Zhu, G.: Research on the new development of image encryption algorithms. Comput. Eng. Sci. 34(5), 1–6 (2012)

    MathSciNet  MATH  Google Scholar 

  124. Zhang, Y., Lu, K., Gao, Y.: Qsobel: a novel quantum image edge extracting algorithm. Sci. China Info. Sci. 58(1), 1–13 (2015)

    Google Scholar 

  125. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  126. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  127. Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  128. Zhou, R., Chang, Z., Fan, P., Li, W., Huang, T.: Quantum image morphology processing based on quantum set operation. Int. J. Theor. Phys. 54(6), 1974–1986 (2015)

    Article  Google Scholar 

  129. Zhou, R., Sun, Y.: Quantum multidimensional color images similarity comparison. Quantum Inf. Process. 14(5), 1605–1624 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  130. Zhou, R., Sun, Y., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  131. Zhou, R., Wu, Q., Zhang, M., Shen, C.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61502053). Additionally, AMI acknowledges funding from the Prince Sattam Bin Abdulaziz University Saudi Arabia via the Deanship for Scientific Research Project Number 2015/01/3317. SEVA gratefully acknowledges the financial support of Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias and CONACyT (SNI Member Number 41594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Iliyasu, A.M. & Venegas-Andraca, S.E. A survey of quantum image representations. Quantum Inf Process 15, 1–35 (2016). https://doi.org/10.1007/s11128-015-1195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1195-6

Keywords

Navigation