Skip to main content

Advertisement

Log in

One-step isolation and biochemical characterization of a highly active plant PSII monomeric core

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BN-PAGE:

Blue native polyacrylamide gel electrophoresis

Chl:

Chlorophyll

DCBQ:

2,6-Dichlorobenzoquinone

DCMU:

3-(3,4-Dichloropheny1)-l,l-dimethylurea

EM:

Electron microscopy

ESI:

Electrospray ionization

K3Fe(CN)6 :

Potassium ferricyanide

LC:

Liquid chromatography

LHC:

Light harvesting complex

MALDI-TOF:

Matrix-assisted laser desorption/ionization-time of flight

MS:

Mass spectrometry

OEC:

Oxygen evolving complex

PEG6000:

Polyethylene glycol Mr 6000

PSII:

Photosystem II

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

α-DM:

alpha-Dodecylmaltoside

β-DM:

beta-Dodecylmaltoside

References

  • Adir N, Okamura MY, Feher G (1992) Crystallization of the PSII-reaction centre. In: Murata N (ed) Research in photosynthesis, vol II. Kluwer Academic Publishers, Dordrecht, pp 5195–5198

    Google Scholar 

  • Amunts A, Ben-Shem A, Nelson N (2005) Solving the structure of plant photosystem I—biochemistry is vital. Photochem Photobiol Sci 4:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Arnon DJ (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–14

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Soursa M, Rokka A, Allahverdiveva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamaki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2003) Photosystem II: the engine of life. Biophys Q Rev 36:71–89

    Article  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92:175–179

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Nield J, Hankamer B, Barber J (1998) The localisation of the 23 kDa subunit of the oxygen evolving complex of photosystem II by electron microscopy. Eur J Chem 252:268–276

    CAS  Google Scholar 

  • Boekema EJ, van Roon H, van Breemen JFL, Dekker JP (1999) Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem 266:444–452

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33 kDa manganese-stabilizing protein. Biochemistry 31:4623–4628

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Burnap RL (2005) The extrinsic proteins of photosystem II. In: Wydrzynski T, Satoh K (eds) Photosystem II: the water/plastoquinone oxido-reductase of photosynthesis. Springer, Dordrecht, pp 95–120

    Google Scholar 

  • Bricker TM, Frankel LK (2003) Carboxylate groups on the manganese-stabilizing protein are required for efficient binding of the 24 kDa extrinsic protein to photosystem II. Biochemistry 42:2056–2061

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Pakrasi HB, Sherman LA (1985) Characterization of a spinach photosystem II core preparation isolated by a simplified method. Arch Biochem Biophys 237:170–176

    Article  PubMed  CAS  Google Scholar 

  • Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A (2010) Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6 Å resolution. J Biol Chem 285:26255–26262

    Article  PubMed  CAS  Google Scholar 

  • Bumba L, Husak M, Vacha F (2004) Interaction of photosystem 2-LHC2 supercomplexes in adjacent layers of stacked chloroplast thylakoid membranes. Photosynthetica 42:193–199

    Article  CAS  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  PubMed  CAS  Google Scholar 

  • Calderone V, Trabucco M, Vujicic A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4:900–905

    Article  PubMed  CAS  Google Scholar 

  • Catucci L, Dorner W, Nield J, Hankamer B, Vass I, Barber J (1998) Isolation and characterization of oxygen evolving photosystem II core complexes from spinach in the presence of glycine betaine. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 973–976

    Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Germano M, van Roon H, Boekema EJ (2002) Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes. Photosynth Res 72:203–210

    Article  PubMed  CAS  Google Scholar 

  • Eshaghi S, Andersson B, Barber J (1999) Isolation of a highly active PSII-LHCII supercomplex from thylakoid membranes by a direct method. FEBS Lett 446:23–26

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic Oxygen-Evolving Center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Fotinou C, Kokkinidis M, Fritzsch G, Haase W, Michel H, Ghanotakis D (1993) Characterization of a photosystem II core and its three-dimensional crystals. Photosynth Res 37:41–48

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Demetriou DM, Yocum CF (1987) Isolation and characterization of an oxygen evolving photosystem II reaction center core and a 28 kDa Chl a-binding protein. Biochim Biophys Acta 891:15–21

    Article  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  PubMed  CAS  Google Scholar 

  • Haag E, Irrgang KD, Boekema EJ, Renger G (1990) Functional and structural analysis of photosystem II core complex from spinach with high oxygen evolution capacity. Eur J Biochem 189:47–53

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Barber J, Boekema E (1997a) Structure and membrane organization of photosystem II in green plants. Ann Rev Plant Physiol Plant Mol Biol 48:641–671

    Article  CAS  Google Scholar 

  • Hankamer B, Nield J, Zheleva D, Boekema E, Jansson S, Barber J (1997b) Isolation and biochemical characterization of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organization of photosystem II in vivo. Eur J Biochem 243:422–429

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP, Nield J, Gerle C, Barber J (2001) Three dimensional structure of the photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135:262–269

    Article  PubMed  CAS  Google Scholar 

  • Hellmann U, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:451–455

    Article  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods in the study of plant nutrition. In: Technical Communication No. 22 (Revised) Commonwealth Agricultural bureaux, 2nd edn. Farnham Royal, Bucks, England

  • Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 5:362–367

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Yuasa M, Inoue Y (1985) Simple and discrete isolation of an O2-evolving PSII reaction center complex retaining Mn and the extrinsic 33 kDa protein. FEBS Lett 185:316–322

    Article  CAS  Google Scholar 

  • Jin Y, Manabe T (2005) Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry. Electrophoresis 26:2823–2834

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100:98–103

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Koike H, Satoh K (2001) An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes. Electrophoresis 22:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Luneberg C, DiFiore D, Biesiadka J, Irrgang KD, Zouni A (2005) Purification, characterization and crystallization of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim Biophys Acta 1706:147–157

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leeuwen PJ, Nieveen MC, van de Meent EJ, Dekker JP, van Gorkom HJ (1991) Rapid and simple isolation of pure photosystem II core reaction center particles from spinach. Photosynth Res 28:149–153

    Article  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Mamedov F, Nowaczyk MM, Thapper A, Rogner M, Styring S (2007) Functional characterization of monomeric photosystem II core preparations from Thermosynechococcus elongatus with or without the Psb27 protein. Biochemistry 46:10703–10712

    Article  PubMed  Google Scholar 

  • Meades GD, McLachlan A, Sallans L, Limbach PA, Bricker TM (2005) Association of the 17 kDa extrinsic protein with photosystem II in higher plants. Biochemistry 44:15216–15221

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Murata N (1989) The mode of binding of three exstrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. Biochim Biophys Acta 977:315–321

    Article  CAS  Google Scholar 

  • Morosinotto T, Bassi R, Frigerio S, Finazzi G, Morris E, Barber J (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. FEBS J 273:4616–4630

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Segalla A, Giacometti GM, Bassi R (2010) Purification of structurally intact grana from plants thylakoids membranes. J Bioenerg Biomembr 42:37–45

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296:187–189

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Barber J (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M, Barber J (2000) 3D map of the plant photosystem II supercomplex obtained by cryo-electron microscopy and single particle analysis. Nat Struct Biol 7:44–47

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Balsera M, De Las Rivas J, Barber J (2002) Three-dimensional electron cryo-microscopy study of the extrinsic domains of the oxygen evolving complex of spinach. J Biol Chem 277:15006–15012

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    Article  PubMed  CAS  Google Scholar 

  • Pagliano C, Raviolo M, Dalla Vecchia F, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N (2006) Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol 84:70–78

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res 44:243–252

    Article  CAS  Google Scholar 

  • Piano D, Alaoui SE, Korza HJ, Filipek R, Sabala I, Haniewicz P, Buechel C, De Sanctis D, Bochtler M (2010) Crystallization of the photosystem II core complex and its chlorophyll binding subunit CP43 from transplastomic plants of Nicotiana tabacum. Photosynth Res 106:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rhee KH, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W, Barber J (1997) Two-dimensional structure of plant photosystem II at 8 Å resolution. Nature 389:522–526

    Article  CAS  Google Scholar 

  • Rhee KH, Morris EP, Barber J, Kühlbrandt W (1998) Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution. Nature 396:283–286

    Article  PubMed  CAS  Google Scholar 

  • Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of photosystem II. Phosynth Res 92:369–387

    Article  CAS  Google Scholar 

  • Satoh K, Butler WL (1978) Low temperature spectral properties of subchloroplast fractions purified from spinach. Plant Physiol 61:373–379

    Article  PubMed  CAS  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  CAS  Google Scholar 

  • Sharma J, Panico M, Barber J, Morris HR (1997) Characterization of the low molecular weight photosystem II reaction center subunits and their light-induced modifications by mass spectrometry. J Biol Chem 272:3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Sirpiö S, Allahverdiyeva Y, Suorsa M, Paakkarinen V, Vainonen J, Battchikova N, Aro EM (2007) TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle. Biochem J 406:415–425

    Article  PubMed  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light harvesting complex at 2.5 Å resolution. EMBO J 24:918–928

    Article  Google Scholar 

  • Takahashi T, Inoue-Kashino N, Ozawa S, Takahashi Y, Kashino Y, Satoh K (2009) Photosystem II complex in vivo is a monomer. J Biol Chem 284:15598–15606

    Article  PubMed  CAS  Google Scholar 

  • Tang XS, Satoh K (1985) The oxygen-evolving photosystem II core complex. FEBS Lett 179:60–64

    Article  CAS  Google Scholar 

  • Thidholm E, Lindström V, Tissier C, Robinson C, Schröder WP, Funk C (2002) Novel approach reveals localization and assembly pathway of the PsbS and PsbW proteins into the photosystem II dimer. FEBS Lett 513:217–222

    Article  PubMed  CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Kerena N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Xu TH, Liu C, Yang CH (2010) Fast isolation of highly active photosystem II core complexes from spinach. J Int Plant Biol 52:793–800

    Article  CAS  Google Scholar 

  • Watanabe M, Iwai M, Narikawa R, Ikeuchi M (2009) Is the photosystem II complex a monomer or a dimer? Plant Cell Physiol 50:1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Yi X, Hargett SR, Frankel LK, Bricker TM (2008) The effects of simultaneous RNAi suppression of PsbO and PsbP protein expression in photosystem II of Arabidopsis. Photosynth Res 98:439–448

    Article  PubMed  CAS  Google Scholar 

  • Yu SG, Björn G, Albertsson PA (1993) Characterization of a non-detergent PSII-cytochrome b/f preparation (BS). Photosynth Res 37:227–236

    Article  CAS  Google Scholar 

  • Zheleva D, Sharma J, Panico M, Morris HR, Barber J (1998) Isolation and characterization of monomeric and dimeric CP47-reaction center photosystem II complexes. J Biol Chem 273:16122–16127

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly thank Prof. Roberto Barbato (University of Piemonte Orientale, Italy) for supplying antibodies against CP47, CP43, D2, D1 and LHCII polypeptides as well as for very useful discussions about the manuscript. We are very grateful to Prof. Miwa Sugiura (Ehime University, Japan) for MALDI‐TOF mass analysis and Dr. Tim Grant (Imperial College, London, UK) for EM analysis. This work was supported by Regione Piemonte (PROESA project, DGR. 36‐8559 7/04/2008) and by European Commission (SOLHYDROMICS project (227192), FP‐7‐Energy‐2008‐FET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Pagliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagliano, C., Chimirri, F., Saracco, G. et al. One-step isolation and biochemical characterization of a highly active plant PSII monomeric core. Photosynth Res 108, 33–46 (2011). https://doi.org/10.1007/s11120-011-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9650-4

Keywords

Navigation