Skip to main content
Log in

Changes in the mode of electron flow to photosystem I following chilling-induced photoinhibition in a C3 plant, Cucumis sativus L.

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This study provides evidence for enhanced electron flow from the stromal compartment of the photosynthetic membranes to P700+ via the cytochrome b6/f complex (Cyt b6/f) in leaves of Cucumis sativus L. submitted to chilling-induced photoinhibition. The above is deduced from the P700 oxidation–reduction kinetics studied in the absence of linear electron transport from water to NADP+, cyclic electron transfer mediated through the Q-cycle of Cyt b6/f and charge recombination in photosystem I (PSI). The segregation of these pathways for P700+ rereduction were achieved by the use of a 50-ms multiple turnover white flash or a strong pulse of white or far-red illumination together with inhibitors. In cucumber leaves, chilling-induced photoinhibition resulted in ∼20% loss of photo-oxidizible P700. The measurement of P700+ was greatly limited by the turnover of cyclic processes in the absence of the linear mode of electron transport as electrons were rapidly transferred to the smaller pool of P700+. The above is explained by integrating the recent model of the cyclic electron flow in C3 plants based on the Cyt b6/f structural data [Joliot and Joliot (2006) Biochim Biophys Acta 1757:362–368] and a photoprotective function elicited by a low NADP+/NAD(P)H ratio [Rajagopal et al. (2003) Biochemistry 42:11839–11845]. Over-reduction of the photosynthetic apparatus results in the accumulation of NAD(P)H in vivo to prevent NADP+-induced reversible conformational changes in PSI and its extensive damage. As the ferredoxin:NADP reductase is fully reduced under these conditions, even in the absence of PSII electron transport, the reduced ferredoxin generated during illumination binds at the stromal openings in the Cyt b6/f complex and activates cyclic electron flow. On the other hand, the excess electrons from the NAD(P)H pool are routed via the Ndh complex in a slow process to maintain moderate reduction of the plastoquinone pool and redox poise required for the operation of ferredoxin:plastoquinone reductase mediated cyclic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A0 :

Primary chlorophyll acceptor

A1 :

Secondary phylloquinone electron acceptor of photosystem I

Chl:

Chlorophyll

CIP:

Chilling induced photoinhibition

Cyt b6/f:

Cytochrome b6/f complex

DBMIB:

2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone

FNR:

Ferredoxin:NAD(P)H reductase

FQR:

Ferredoxin:plastoquinone reductase

FR-light:

Far-red light

FX, FA, and FB :

Iron–sulfur centers

MT-flash:

Multiple turnover white flash

MV:

Methyl viologen

Ndh:

NAD(P)H dehydrogenase complex

NP:

Non-photoinhibited

P700:

Reaction center chlorophyll of photosystem I

PQ:

Plastoquinone

PS:

Photosystem

QA and QB :

Primary and secondary quinone acceptors of photosystem II

WL:

White light

References

  • Allahverdiyeva Y, Mamedov F, Maenpaa P, Vass I, Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709:69–83

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turn over. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Aroca R, Irigoyen JJ, Sanchez-Diaz M (2001) Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity. Plant Sci 161:719–726

    Article  CAS  Google Scholar 

  • Asada K, Heber U, Schreiber U (1992) Pool size of electrons that can be donated to P700+, as determined in intact leaves: donation to P700+ from stromal components via the intersystem chain. Plant Cell Physiol 33:927–932

    CAS  Google Scholar 

  • Asada K, Heber U, Schreiber U (1993) Electron flow to the intersystem chain from stromal components and cyclic electron flow in maize chloroplasts, as detected in intact leaves by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiol 34:39–50

    CAS  Google Scholar 

  • Barth C, Krause GH (1999) Inhibition of photosystems I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress. Z Naturforsch 54:645–657

    CAS  Google Scholar 

  • Barth C, Krause GH (2002) Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta 216:273–279

    Article  PubMed  CAS  Google Scholar 

  • Bukhov N, Carpentier R (2004) Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynth Res 82:17–33

    Article  PubMed  CAS  Google Scholar 

  • Bukhov NG, Egorova EA, Govindachary S, Carpentier R (2004a) Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. Biochim Biophys Acta 1657:121–130

    Article  PubMed  CAS  Google Scholar 

  • Bukhov NG, Govindachary S, Rajagopal S, Joly D, Carpentier R (2004b) Enhanced rates of P700+ dark-reduction in leaves of Cucumis sativus L. photoinhibited at chilling temperature. Planta 218:852–861

    Article  PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Jeong S, Jeong W, Kwon S, Chow W, Park Y-I (2002) Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in light. Planta 216:315–324

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Hope AB (2004) Electron fluxes through photosystem I in cucumber leaf discs probed by far-red light. Photosynth Res 81:77–89

    Article  PubMed  CAS  Google Scholar 

  • Ducruet JM, Roman M, Havaux M, Janda T, Gallais A (2005) Cyclic electron flow around PSI monitored by afterglow luminescence in leaves of maize inbred lines (Zea mays L.): correlation with chilling tolerance. Planta 221:567–579

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Kawase D, Sato F (2005) Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance. Plant Cell Physiol 46:775–781

    Article  PubMed  CAS  Google Scholar 

  • Feild TS, Nedbal L, Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol 116:1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Golbeck JH, Bryant DA (1991) Photosystem I. Curr Topics Bioenerg 16:83–177

    CAS  Google Scholar 

  • Govindachary S, Bukhov NG, Joly D, Carpentier R (2004) Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerant plants. Physiol Plant 121:322–333

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Lunde C, Scheller HV (2003) Arabidopsis thaliana plants lacking the PSI-D subunit of photosystem I suffer severe photoinhibition, have unstable photosystem I complexes, and altered redox homeostasis in the chloroplast stroma. J Biol Chem 278:33276–33283

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Foyer CH (1991) Relationships between the efficiencies of photosystem I and photosystem II and stromal redox state in CO2 free air: evidence for cyclic electron flow in vivo. Plant Physiol 97:41–49

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Hedley CL (1989) The kinetics of P700+ reduction in leaves: a novel in situ probe of thylakoid functioning. Plant Cell Environ 12:357–369

    Article  CAS  Google Scholar 

  • Harbinson J, Hedley CL (1993) Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol 103:649–660

    PubMed  CAS  Google Scholar 

  • Havaux M, Devaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity: preferential inactivation of photosystem I. Photosynth Res 40:75–92

    Article  CAS  Google Scholar 

  • Havaux M, Rumeau D, Ducruet JM (2005) Probing the FQR and NDH activities involved in cyclic electron transport around photosystem I by the ‘afterglow’ luminescence. Biochim Biophys Acta 1709:203–213

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Sonoike K (2001) Regulation, inhibition and protection of photosystem I. In: Aro E-M, Anderson J (eds) Regulation of photosynthesis. Kluwer Acad Publishers, Dordrecht, pp 507–531

    Google Scholar 

  • Jakob B, Heber U (1996) Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II. Plant Cell Physiol 37:629–635

    CAS  Google Scholar 

  • Joët T, Cournac L, Peltier G, Havaux M (2002) Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128:760–769

    Article  PubMed  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci 99:10209–10214

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Lee CH, Hope AB, Chow WS (2001) Inhibition of photosystems I and II and enhanced back flow of photosystem I electrons in cucumber leaf discs chilled in the light. Plant Cell Physiol 42:842–848

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1991) Analysis of light-induced absorbance changes in the near-infrared spectral region. 1. Characterization of various components in isolated-chloroplasts. Z Naturforsch 46:233–244

    CAS  Google Scholar 

  • Klughammer C, Schreiber U (1998) Measuring P700 absorbance changes in the near infra-red spectral region with a dual wavelength pulse modulation system. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 4357–4360

    Google Scholar 

  • Kobayashi Y, Heber U (1994) Rates of vectorial proton transport supported by cyclic electron flow during oxygen reduction by illuminated intact chloroplasts. Photosynth Res 41:419–428

    Article  CAS  Google Scholar 

  • Kofer W, Koop HU, Wanner G, Steinmuller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258:166–173

    Article  PubMed  CAS  Google Scholar 

  • Kudoh H, Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541–548

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M, Tomizawa K (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Shikanai T (2006) Cyclic electron transport through photosystem I. Plant Biotechnol 22:369

    Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyaka C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Bukhov NG, Tajmir-Riahi HA, Carpentier R (2003) Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes. Biochemistry 42:11839–11845

    Article  PubMed  CAS  Google Scholar 

  • Sarvikas P, Hakala M, Patsikka E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47:391–400

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Haldrup A (2005) Photoinhibition of photosystem I. Planta 221:5–8

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Klughammer C, Neubauer C (1988) Measuring P700 absorbance changes around 830 nm with a new type of pulse modulation system. Z Naturforsch 43c:686–698

    Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci 95:9705–9709

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K (1996a) Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. Plant Sci 115:157–164

    Article  CAS  Google Scholar 

  • Sonoike K (1996b) Photoinhihition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    CAS  Google Scholar 

  • Sonoike K, Terashima I (1994) Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus. Planta 194:287–293

    Article  CAS  Google Scholar 

  • Sonoike K, Terashima I, Iwaki M, Itoh S (1995) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L., by weak lllumination at chilling temperatures. FEBS Lett 362:235–238

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I (1997a) The mechanism of degradation of psaB protein, a reaction center subunit of photosystem I, upon photoinhibition. Plant Sci 115:157–164

    Article  Google Scholar 

  • Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I (1997b) The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition. Photosynth Res 53:55–63

    Article  CAS  Google Scholar 

  • Teicher BH, Möller BL, Scheller HV (2000) Photoinhibition of photosystem I in field-grown barley (Hordeum vulgare L.): induction, recovery and acclimation. Photosynth Res 64:53–61

    Article  CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus at low-temperatures is photosystem I, not photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Tjus SE, Möller BL, Scheller HV (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116:755–764

    Article  PubMed  CAS  Google Scholar 

  • Tjus SE, Möller BM, Scheller HV (1999) Photoinhibition of photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60:75–86

    Article  CAS  Google Scholar 

  • Tjus SE, Scheller HV, Andersson B, Möller BL (2001) Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiol 125:2007–2015

    Article  PubMed  CAS  Google Scholar 

  • Vassiliev IR, Antonkine ML, Golbeck JH (2001) Iron-sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507:139–160

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi HL (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shikanai T, Hase T, Endo T, Nishioka M, Makino A, Tomizawa K, Miyake C (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants-stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. Plant Cell Physiol 47:1355–1371

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Whitelegge JP, Cramer WA (2001) Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J Biol Chem 276:38159–38165

    PubMed  CAS  Google Scholar 

  • Zhang SP, Scheller HV (2004) Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol 45:1595–1602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds québécois de la recherché sur la nature les technologies through Centre SÈVE. D.J. was a recipient of a NSERC graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Carpentier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindachary, S., Bigras, C., Harnois, J. et al. Changes in the mode of electron flow to photosystem I following chilling-induced photoinhibition in a C3 plant, Cucumis sativus L.. Photosynth Res 94, 333–345 (2007). https://doi.org/10.1007/s11120-007-9199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9199-4

Keywords

Navigation