Skip to main content
Log in

Global Gaussian Estimates for the Heat Kernel of Homogeneous Sums of Squares

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathscr{H}}={\sum }_{j=1}^{m}{X_{j}^{2}}-\partial _{t}\) be a heat-type operator in \(\mathbb {R}^{n+1}\), where X = {X1,…,Xm} is a system of smooth Hörmander’s vector fields in \(\mathbb {R}^{n}\), and every Xj is homogeneous of degree 1 with respect to a family of non-isotropic dilations in \(\mathbb {R}^{n}\), while no underlying group structure is assumed. In this paper we prove global (in space and time) upper and lower Gaussian estimates for the heat kernel Γ(t,x;s,y) of \({\mathscr{H}}\), in terms of the Carnot-Carathéodory distance induced by X on \(\mathbb {R}^{n}\), as well as global upper Gaussian estimates for the t- or X-derivatives of any order of Γ. From the Gaussian bounds we derive the unique solvability of the Cauchy problem for a possibly unbounded continuous initial datum satisfying exponential growth at infinity. Also, we study the solvability of the \({\mathscr{H}}\)-Dirichlet problem on an arbitrary bounded domain. Finally, we establish a global scale-invariant Harnack inequality for non-negative solutions of \({\mathscr{H}}u=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biagi, S., Bonfiglioli, A.: A completeness result for time-dependent vector fields and applications. Commun. Contemp. Math. 17, 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biagi, S., Bonfiglioli, A.: The existence of a global fundamental solution for homogeneous Hörmander operators via a global Lifting method. Proc. Lond. Math. Soc. 114(5), 855–889 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biagi, S., Bonfiglioli, A.: Introduction to the geometrical analysis of vector fields. With applications to maximum principles and Lie groups. World Scientific Publishing Company (2018)

  4. Biagi, S., Bonfiglioli, A.: Global Heat kernels for parabolic homogeneous Hörmander operators. To appear on Israel J. of Math. (2019)

  5. Biagi, S., Bonfiglioli, A., Bramanti, M.: Global estimates for the fundamental solution of homogeneous Hörmander operators. To appear on Ann. di Mat. Pura e Appl. (2019)

  6. Biagi, S., Bonfiglioli, A., Bramanti, M.: Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares. J. Math. Anal. Appl. 498 (2020)

  7. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 358(3-4), 833–860 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonfiglioli, A., Lanconelli, E.: Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Comm. Pure Appl. Anal. 11, 1587–1614 (2012)

    Article  MATH  Google Scholar 

  9. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their sub-Laplacians, Springer Monographs in Mathematics 26, Springer, New York N.Y. (2007)

  10. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups. Adv. Diff. Equ. 7, 1153–1192 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Bramanti, M., Brandolini, L., Lanconelli, E., Uguzzoni, F.: Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities. Mem. Amer. Math. Soc. 204(961) (2010)

  12. Davies, E.B.: Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds. J. Funct. Anal. 80(1), 16–32 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dungey, N., ter Elst, A.F.M., Robinson, D.W.: Analysis on Lie Groups with Polynomial Growth Progress in Mathematics, vol. 214. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  14. Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Folland, G.B.: On the Rothschild-Stein lifting theorem. Comm. Part. Diff. Equ. 2, 165–191 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence, RI, International Press, Boston (2009)

    Google Scholar 

  17. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke. Math. J. 53, 503–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jerison, D., Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35(4), 835–854 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kogoj, A.E.: On the Dirichlet problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion. J. Diff. Equ. 262, 1524–1539 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus, III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(2), 391–442 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Kusuoka, S., Stroock, D.: Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator. Ann. of Math. 127(1), 165–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lanconelli, E., Uguzzoni, F.: Potential analysis for a class of diffusion equations: a Gaussian bounds approach. J. Diff. Equ. 248, 2329–2367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lanconelli, E., Tralli, G., Uguzzoni, F.: Wiener-type tests from a two-sided Gaussian bound. Ann. Mat. Pura Appl. 196, 217–244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Léandre, R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Probab. Theory Related Fields 74(2), 289–294 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Léandre, R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74(2), 399–414 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3-4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  28. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: Basic properties. Acta Math. 155, 130–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Negrini, P., Scornazzani, V.: Superharmonic functions and regularity of boundary points for a class of elliptic–parabolic partial differential operators. Boll. Unione Mat. Ital. (6) 3, 85–107 (1984)

    MathSciNet  MATH  Google Scholar 

  30. Rothschild, L.P., Stein, E. M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3-4), 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saloff-Coste, L.: Aspects of Sobolev-type Inequalities London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  32. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78, 143–160 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sturm, K.T.: Analysis on local Dirichlet spaces - II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka. J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Sturm, K.T.: Analysis on local Dirichlet spaces - III. The parabolic Harnack inequality. J. Math. Pures Appl. 75(3), 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Tralli, G., Uguzzoni, F.: A Wiener test á la Landis for evolutive hörmander operators. J. Funct. Anal. 278, 34 (2020)

    Article  MATH  Google Scholar 

  36. Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Biagi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biagi, S., Bramanti, M. Global Gaussian Estimates for the Heat Kernel of Homogeneous Sums of Squares. Potential Anal 59, 113–151 (2023). https://doi.org/10.1007/s11118-021-09963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09963-8

Keywords

Mathematics Subject Classification (2010)

Navigation