Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Potential Analysis
  3. Article
Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Maximal regularity with weights for parabolic problems with inhomogeneous boundary conditions

06 June 2019

Nick Lindemulder

Boundary value problems of elliptic and parabolic type with boundary data of negative regularity

18 January 2021

Felix Hummel

Maximal $$L^1$$ L 1 -regularity for parabolic initial-boundary value problems with inhomogeneous data

18 April 2022

Takayoshi Ogawa & Senjo Shimizu

On Connection between Solutions in Different Weighted Spaces to One Singular Elliptic Boundary Value Problem

01 March 2020

A. A. Larin

Mixed boundary value problems for parabolic equations in Sobolev spaces with mixed-norms

05 November 2022

Jongkeun Choi, Hongjie Dong & Zongyuan Li

Regularity for parabolic equations with singular or degenerate coefficients

24 January 2021

Hongjie Dong & Tuoc Phan

Singular Integral Operators and Elliptic Boundary-Value Problems. Part I

15 February 2020

A. P. Soldatov

Natural second-order regularity for parabolic systems with operators having $$(p,\delta )$$ ( p , Ξ΄ ) -structure and depending only on the symmetric gradient

13 May 2022

Luigi C. Berselli & Michael Růžička

Correct Solvability of Model Boundary-Value Problems for Systems Parabolic in Γ‰idelman’s Sense with and without Initial Conditions in the HΓΆlder Spaces of Increasing Functions

21 February 2022

N. I. Turchyna & S. D. Ivasyshen

Download PDF
  • Open Access
  • Published: 02 July 2021

Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces

  • Felix HummelΒ  ORCID: orcid.org/0000-0002-2374-70301 &
  • Nick Lindemulder2,3Β 

Potential Analysis volumeΒ 57,Β pages 601–669 (2022)Cite this article

  • 263 Accesses

  • 1 Citations

  • Metrics details

Abstract

In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted Lq-maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt \(A_{\infty }\)-class. In the Besov space case we have the restriction that the microscopic parameter equals to q. Going beyond the Ap-range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. AlΓ²s, E., Bonaccorsi, S.: Stability for stochastic partial differential equations with D,irichlet white-noise boundary conditions. Infin. Dimens. Anal. Quantum Probab. Relat Top. 5(4), 465–481 (2002)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  2. Amann, H.: Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. BirkhΓ€user Boston, Inc., Boston. Abstract linear theory (1995)

  3. Amann, H. : Linear and quasilinear parabolic problemsVol. II, volume 106 of Monographs in Mathematics. BirkhΓ€user/Springer, Cham. Function spaces (2019)

  4. Amann, H.: Linear and quasilinear parabolic problems. Vol. II, volume 106 of Monographs in Mathematics. BirkhΓ€user/Springer, Cham. Function spaces (2019)

  5. Arendt, W., Duelli, M.: Maximal lp-regularity for parabolic and elliptic equations on the line. J. Evol. Equ. 6(4), 773–790 (2006)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  6. Boutet de Monvel, L.: Comportement d’un opΓ©rateur pseudo-diffΓ©rentiel sur une variΓ©tΓ© Γ  bord. II. Pseudo-noyaux de Poisson. J. Analyse Math. 17, 255–304 (1966)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  7. Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math. 126(1-2), 11–51 (1971)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  8. Brewster, K., Mitrea, M.: Boundary value problems in weighted S,obolev spaces on Lipschitz manifolds. Mem. Differ. Equ. Math. Phys. 60, 15–55 (2013)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  9. BrzeΕΊniak, Z., Goldys, B., Peszat, S., Russo, F. : Second order PDEs with Dirichlet white noise boundary conditions. J. Evol. Equ. 15(1), 1–26 (2015)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  10. Bui, H. -Q.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima. Math. J. 12(3), 581–605 (1982)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  11. Bui, H. -Q.: Remark on the characterization of weighted Besov spaces via temperatures. Hiroshima. Math. J. 24(3), 647–655 (1994)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  12. Bui, H. -Q., PaluszyΕ„ski, M., Taibleson, M. H.: A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119(3), 219–246 (1996)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  13. Chill, R., Fiorenza, A.: Singular integral operators with operator-valued kernels, and extrapolation of maximal regularity into rearrangement invariant Banach function spaces. J. Evol. Equ. 14(4-5), 795–828 (2014)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  14. Chill, R., KrΓ³l, S.: Real interpolation with weighted rearrangement invariant Banach function spaces. J. Evol. Equ. 17(1), 173–195 (2017)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  15. Cioica-Licht, P. A., Kim, K. -H., Lee, K.: On the regularity of the stochastic heat equation on polygonal domains in \(\mathbb {R}^{2}\). J. Differ. Equ. 267(11), 6447–6479 (2019)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  16. Cioica-Licht, P. A., Kim, K. -H., Lee, K., Lindner, F.: An Lp-estimate for the stochastic heat equation on an angular domain in \(\mathbb {R}^{2}\). Stoch. Partial Differ. Equ. Anal. Comput. 6(1), 45–72 (2018)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  17. ClΓ©ment, P., PrΓΌss, J.: An operator-valued transference principle and maximal regularity on vector-valued Lp-spaces. In: Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), volume 215 of Lecture Notes in Pure and Appl. Math., pp. 67–87. Dekker, New York (2001)

  18. ClΓ©ment, P., Simonett, G.: Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations. J. Evol. Equ. 1(1), 39–67 (2001)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  19. John, B.: Conway. Functions of One Complex Variable, Volume 11 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1978)

    Google ScholarΒ 

  20. Denk, R., Hieber, M., PrΓΌss, J.: \(\mathcal {R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788), viii+ 114 (2003)

  21. Denk, R., Hieber, M., PrΓΌss, J.: Optimal Lp-lq-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257(1), 193–224 (2007)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  22. Denk, R., Kaip, M.: General parabolic mixed order systems in lp and applications, volume 239 of Operator Theory Advances and Applications. BirkhΓ€user/springer, Cham (2013)

  23. Denk, R., Seger, T.: Inhomogeneous Boundary Value Problems in Spaces of Higher Regularity. In: Recent Developments of Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., pp 157–173. BirkhΓ€user/Springer, Basel (2016)

  24. Dong, H., Gallarati, C.: Higher-order elliptic and parabolic equations with VMO assumptions and general boundary conditions. J. Funct. Anal. 274(7), 1993–2038 (2018)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  25. Dong, H., Gallarati, C.: Higher-order parabolic equations with vmo assumptions and general boundary conditions with variable leading coefficients. International Mathematics Research Notices, pp. rny084 (2018)

  26. Dong, H., Kim, D.: Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces. Adv. Math. 274, 681–735 (2015)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  27. Dore, G.: \(H^{\infty }\) functional calculus in real interpolation spaces. Studia Math. 137(2), 161–167 (1999)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  28. Dore, G.: Maximal regularity in lp spaces for an abstract Cauchy problem. Adv. Differ. Equ. 5(1-3), 293–322 (2000)

    MATHΒ  Google ScholarΒ 

  29. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196(2), 189–201 (1987)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  30. equations, L.C. Evans.: Partial Differential Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google ScholarΒ 

  31. Fabbri, G., Goldys, B.: An LQ problem for the heat equation on the halfline with Dirichlet boundary control and noise. SIAM J. Control Optim. 48 (3), 1473–1488 (2009)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  32. Fackler, S., HytΓΆnen, T. P., Lindemulder, N.: Weighted estimates for operator-valued Fourier multipliers Collect. Math. 71(3), 511–548 (2020)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  33. Farwig, R., Sohr, H.: Weighted Lq-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49(2), 251–288 (1997)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  34. Giga, Y: Analyticity of the semigroup generated by the Stokes operator in lr spaces. Math. Z. 178(3), 297–329 (1981)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  35. Grafakos, L.: Modern Fourier Analysis, Volume 250 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2009)

    Google ScholarΒ 

  36. Grubb, G.: Singular Green operators and their spectral asymptotics. Duke Math. J. 51(3), 477–528 (1984)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  37. Grubb, G.: Pseudo-differential boundary problems in lp spaces. Comm. Partial Differ. Equ. 15(3), 289–340 (1990)

    ArticleΒ  MATHΒ  Google ScholarΒ 

  38. Grubb, G.: Functional calculus of pseudodifferential boundary problems, volume 65 of Progress in Mathematics, 2nd edn. BirkhΓ€user Boston, Inc., Boston (1996)

    BookΒ  Google ScholarΒ 

  39. Grubb, G.: Modern Fourier analysis, volume 250 of Graduate Texts in Mathematics. Springer, New York (2009)

  40. Grubb, G., Kokholm, N. J.: A global calculus of parameter-dependent pseudodifferential boundary problems in lp Sobolev spaces. Acta Math. 171(2), 165–229 (1993)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  41. Haroske, D. D., Piotrowska, I.: Atomic decompositions of function spaces with M,uckenhoupt weights, and some relation to fractal analysis. Math Nachr. 281(10), 1476–1494 (2008)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  42. Haroske, D. D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I. Rev. Mat. Complut. 21 (1), 135–177 (2008)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  43. Haroske, D. D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn Math. 36(1), 111–138 (2011)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  44. Haroske, D. D., Skrzypczak, L.: Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases. J. Funct Spaces Appl. 9(2), 129–178 (2011)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  45. Hummel, F.: Boundary value problems of elliptic and parabolic type with boundary data of negative regularity J. Evol. Equ. https://doi.org/10.1007/s00028-020-00664-0(2021)

  46. HytΓΆnen, T. P., van Neerven, J. M. A. M., Veraar, M. C., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge. Springer (2016)

  47. HytΓΆnen, T. P., van Neerven, J. M. A. M., Veraar, M. C., Weis, L.: Analysis in Banach spaces. Vol. II. Probabilistic Methods and Operator Theory., volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge. Springer (2017)

  48. Johnsen, J.: Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces. Math. Scand. 79(1), 25–85 (1996)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  49. Johnsen, J., Sickel, W.: On the trace problem for Lizorkin-Triebel spaces with mixed norms. Math. Nachr. 281(5), 669–696 (2008)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  50. Kalton, N. J., Kunstmann, P. C., Weis, L.: Perturbation and interpolation theorems for the \(h^{\infty }\)-calculus with applications to differential operators. Math. Ann. 336(4), 747–801 (2006)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  51. Kalton, N. J., Weis, L: The \(h^{\infty }\)-calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  52. Kim, K. -H.: Lq(lp)-theory of parabolic PDEs with variable coefficients. Bull. Korean Math. Soc. 45 (1), 169–190 (2008)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  53. KΓΆhne, M., PrΓΌss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted lp-spaces. J. Evol. Equ. 10(2), 443–463 (2010)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  54. Krylov, N. V.: Weighted Sobolev spaces and Laplace’s equation and the heat equations in a half space. Comm. Partial Differ. Equ. 24(9-10), 1611–1653 (1999)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  55. Krylov, N. V.: The heat equation in lq((0,t),lp)-spaces with weights. SIAM J. Math. Anal. 32(5), 1117–1141 (2001)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  56. Kunstmann, P. C., Weis, L.: Maximal Lp-Regularity for Parabolic Equations, Fourier Multiplier Theorems and \(H^{\infty }\)-Functional Calculus. In: Functional Analytic Methods for Evolution Equations, Volume 1855 of Lecture Notes in Math., pp 65–311. Springer, Berlin (2004)

  57. LeCrone, J., Pruess, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted lp-spaces II. J. Evol. Equ. 14(3), 509–533 (2014)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  58. Lindemulder, N.: Parabolic Initial-Boundary Value Problems with 1Nhomoegeneous Data: A Weighted Maximal Regularity Approach. Master’s thesis, Utrecht University (2014)

  59. Lindemulder, N.: Second Order Operators Subject to Dirichlet Boundary Conditions in Weighted Triebel-Lizorkin Spaces: Parabolic problems (2018)

  60. Lindemulder, N.: Maximal Regularity with Weights for Parabolic Problems with Inhomogeneous Boundary Conditions. Journal of Evolution Equations (2019)

  61. Lindemulder, N.: An intersection representation for a class of anisotropic vector-valued function spaces. J. Approx. Theory 264(61), 105519 (2021)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  62. Lindemulder, N.: Second Order Operators Subject to Dirichlet Boundary Conditions in Weighted Besov and Triebel-Lizorkin Spaces: Elliptic Problems in preparation (2021)

  63. Lindemulder, N., Meyries, M., Veraar, M.C.: Complex interpolation with Dirichlet boundary conditions on the half line. To appear in Mathematische Nachrichten, https://arxiv.org/abs/1705.11054 (2017)

  64. Lindemulder, N., Veraar, M. C.: The heat equation with rough boundary conditions and holomorphic functional calculus. J. Differ. Equ. 269(7), 5832–5899 (2020)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  65. Lindemulder, N., Veraar, M.C.: Parabolic Second Order Problems with Multiplicative Dirichlet Boundary Noise. In preparation (2021)

  66. Maz’ya, V., Shaposhnikova, T.: Higher regularity in the layer potential theory for L,ipschitz domains. Ind. Univ. Math J. 54(1), 99–142 (2005)

    ArticleΒ  MATHΒ  Google ScholarΒ 

  67. Meyries, M.: Maximal regularity in weighted spaces, nonlinear boundary conditions, And Global Attractors. PhD thesis, Karlsruhe Institute of Technology (2010)

  68. Meyries, M., Schnaubelt, R.: Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions. Math. Nachr. 285(8-9), 1032–1051 (2012)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  69. Meyries, M., Veraar, M. C.: Sharp embedding results for spaces of smooth functions with power weights. Studia Math. 208(3), 257–293 (2012)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  70. Meyries, M., Veraar, M.C.: Characterization of a class of embeddings for function spaces with M,uckenhoupt weights. Arch Math. (Basel) 103(5), 435–449 (2014)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  71. Meyries, M., Veraar, M. C.: Traces and embeddings of anisotropic function spaces. Math. Ann. 360(3-4), 571–606 (2014)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  72. Meyries, M., Veraar, M.C.: Pointwise multiplication on vector-valued function spaces with power weights. J. Fourier Anal. Appl. 21(1), 95–136 (2015)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  73. Mielke, A.: ÜBer maximale lp-RegularitΓ€t fΓΌr Differentialgleichungen in Banach- und Hilbert-RΓ€umen. Math. Ann. 277(1), 121–133 (1987)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  74. Mitrea, M., Taylor, M.: The Poisson problem in weighted Sobolev spaces on Lipschitz domains. Ind. Univ. Math. J. 55(3), 1063–1089 (2006)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  75. PrΓΌss, J., Simonett, G.: Maximal regularity for evolution equations in weighted Lp,-spaces. Arch Math. (Basel) 82(5), 415–431 (2004)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  76. PrΓΌss, J., Simonett, G. : Moving interfaces and Quasilinear parabolic evolution equations, volume 105 of Monographs in Mathematics. BirkhΓ€user/springer, Cham (2016)

  77. PrΓΌss, J., Simonett, G., Wilke, M.: Critical spaces for quasilinear parabolic evolution equations and applications. J. Differ. Equ. 264(3), 2028–2074 (2018)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  78. PrΓΌss, J., Wilke, M.: Addendum to the paper β€œOn quasilinear parabolic evolution equations in weighted lp-spaces II”. J. Evol. Equ. 17(4), 1381–1388 (2017)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  79. PrΓΌss, J., Wilke, M.: On critical spaces for the Navier-Stokes equations. J. Math. Fluid Mech. 20(2), 733–755 (2018)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  80. Rempel, S., Schulze, B.-W.: Index Theory of Elliptic Boundary Problems. Akademie, Berlin (1982)

    MATHΒ  Google ScholarΒ 

  81. Roitberg, Y.: Elliptic boundary value problems in the spaces of distributions, volume 384 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht. Translated from the Russian by Peter Malyshev and Dmitry Malyshev (1996)

  82. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Volume 3 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1996)

    MATHΒ  Google ScholarΒ 

  83. Rychkov, V. S.: On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. (2) 60(1), 237–257 (1999)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  84. Scharf, B.: Atomic representations in function spaces and applications to pointwise multipliers and diffeomorphisms, a new approach. Math. Nachr. 286(2-3), 283–305 (2013)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  85. Schrohe, E.: A Short Introduction to Boutet De Monvel’s Calculus. In: Approaches to Singular Analysis (Berlin, 1999), Volume 125 of Oper. Theory Adv. Appl., pp 85–116. Basel, BirkhΓ€user (2001)

  86. Seeley, R. T.: Extension of \(c^{\infty }\) functions defined in a half space. Proc. Amer. Math. Soc. 15, 625–626 (1964)

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

  87. Sickel, W., Skrzypczak, L., VybΓ­ral, J.: Complex interpolation of weighted Besov and Lizorkin-Triebel spaces. Acta Math. Sin. (Engl. Ser.) 30(8), 1297–1323 (2014)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  88. Sowers, R. B.: Multidimensional reaction-diffusion equations with white noise boundary perturbations. Ann. Probab. 22(4), 2071–2121 (1994)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  89. ViΕ‘ik, M. I., Èskin, G. I.: Elliptic convolution equations in a bounded region and their applications. Uspehi Mat. Nauk. 22(1 (133)), 15–76 (1967)

    MathSciNetΒ  Google ScholarΒ 

  90. Weis, L.W.: Operator-valued Fourier multiplier theorems and maximal Lp. Math. Ann. 319(4), 735–758 (2001)

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  91. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge. Translated from the German by C. B. Thomas and M. J. Thomas (1987)

Download references

Acknowledgements

The authors would like to thank Mark Veraar for pointing out the Phragmen-LindelΓΆf Theorem (see [19, Corollary 6.4.4]) for the proof of Lemma 2.1. They would also like to thank Robert Denk for useful discussions on the Boutet de Monvel calculus.

Funding

Open Access funding enabled and organized by Projekt DEAL. The first author thanks the Studienstiftung des deutschen Volkes for the scholarship during his doctorate and the EU for the partial support within the TiPES project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820970. This is TiPES contribution #102. The second author was supported by the Vidi subsidy 639.032.427 of the Netherlands Organisation for Scientific Research (NWO) until January 2019.

Author information

Authors and Affiliations

  1. Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching bei München, Germany

    Felix Hummel

  2. Institute of Analysis, Karlsruhe Institute of Technology, Englerstraße 2, 76131, Karlsruhe, Germany

    Nick Lindemulder

  3. Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600, GA, Delft, The Netherlands

    Nick Lindemulder

Authors
  1. Felix Hummel
    View author publications

    You can also search for this author in PubMedΒ Google Scholar

  2. Nick Lindemulder
    View author publications

    You can also search for this author in PubMedΒ Google Scholar

Corresponding author

Correspondence to Felix Hummel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: A Weighted Version of a Theorem due to ClΓ©ment and PrΓΌss

The following theorem is a weighted version of a result from [17] (see [46, Theorem 5.3.15]). For its statement we need some notation that we first introduce.

Let X be a Banach space. We write \(\widehat {C^{\infty }_{c}}(\mathbb {R}^{n};X) := {\mathscr{F}}^{-1}C^{\infty }_{c}(\mathbb {R}^{n};X)\) and \(\widehat {L^{1}}(\mathbb {R}^{n};X) := {\mathscr{F}}^{-1}L^{1}(\mathbb {R}^{n};X)\). Then

$$ L_{1,\text{loc}}(\mathbb{R}^{n};\mathcal{B}(X)) \times \widehat{C^{\infty}_{c}}(\mathbb{R}^{n};X) \longrightarrow \widehat{L^{1}}(\mathbb{R}^{n};X), (m,f) \mapsto \mathcal{F}^{-1}[m\hat{f}] =: T_{m}f. $$

For \(p \in (1,\infty )\) and \(w \in A_{p}(\mathbb {R}^{n})\) we define \(\mathfrak {M}L_{p}(\mathbb {R}^{n},w;X)\) as the space of all \(m \in L_{1,\text {loc}}(\mathbb {R}^{n};{\mathscr{B}}(X))\) for which Tm extends to a bounded linear operator on \(L_{p}(\mathbb {R}^{n},w;X)\), equipped with the norm

$$ \|{m}\|_{\mathfrak{M}L_{p}(\mathbb{R}^{n},w;X)} := \|{T_{m}}\|_{\mathcal{B}(L_{p}(\mathbb{R}^{n},w;X))}. $$

Theorem A.1

Let X be a Banach space, \(p \in (1,\infty )\) and \(w \in A_{p}(\mathbb {R}^{n})\). For all \(m \in \mathfrak {M}L_{p}(\mathbb {R}^{n},w;X)\) it holds that

$$ \{ m(\xi) : \xi\ \text{is a Lebesgue point of}\ m\} $$

is R-bounded with

$$ \begin{array}{@{}rcl@{}} {m}_{L_{\infty}(\mathbb{R}^{n};\mathcal{B}(X))} &\leq \mathcal{R}_{p}\left( \{ m(\xi) : \xi \ \text{is a Lebesgue point of}\ m \}\right) \lesssim_{p,w} \|{m}\|_{\mathfrak{M}L_{p}(\mathbb{R}^{n},w;X)}. \end{array} $$

Proof

This can be shown as in [46, Theorem 5.3.15]. Let us comment on some modifications that have to be made for the second estimate. Modifying the HΓΆlder argument given there according to Eq. 2-2, the implicit constant Cp,w of interest can be estimated by

$$ C_{p,w} \leq \liminf_{\epsilon \to 0}\epsilon^{d}\|{\phi(\epsilon \cdot )}\|_{L_{p}(\mathbb{R}^{n},w)} \|{\psi(\epsilon \cdot )}\|_{L_{p^{\prime}}(\mathbb{R}^{n},w^{\prime}_{p})}, $$

where \(\phi ,\psi \in \mathcal {S}(\mathbb {R}^{n})\) are such that \(\hat {\phi }\), \(\check {\psi }\) are compactly supported with the property that \({\int \limits } \hat {\phi } \check {\psi } d\xi = 1\). By a change of variable,

$$ \epsilon^{d}\|{\phi(\epsilon \cdot )}\|_{L_{p}(\mathbb{R}^{n},w)} \|{\psi(\epsilon \cdot )}\|_{L_{p^{\prime}}(\mathbb{R}^{n},w^{\prime}_{p})} = \|{\phi}\|_{L_{p}(\mathbb{R}^{n},w(\epsilon \cdot ))}\|{\psi}\|_{L_{p^{\prime}}(\mathbb{R}^{n},w^{\prime}_{p}(\epsilon \cdot ))}. $$

Since \(\mathcal {S}(\mathbb {R}^{n}) \hookrightarrow L_{p}(\mathbb {R}^{n},w)\) with norm estimate only depending on n, p and \([w]_{A_{p}}\) (as a consequence of [69, Lemma 4.5]) and since the Ap-characteristic is invariant under scaling, the desired result follows. β–‘

Appendix B: Pointwise Multiplication

Lemma B.1

Let \({\mathscr{O}}\) be either \(\mathbb {R}^{d}_{+}\) or a \(C^{\infty }\)-domain in \(\mathbb {R}^{d}\) with a compact boundary \(\partial {\mathscr{O}}\), let X be a Banach space, \(U \in \{\mathbb {R}^{d},{\mathscr{O}}\}\) and let either

  • \(p \in [1,\infty )\), \(q \in [1,\infty ]\), \(\gamma \in (-1,\infty )\) and \({\mathscr{A}} \in \{B,F\}\); or

  • X be reflexive, \(p,q \in (1,\infty )\), \(\gamma \in (-\infty ,p-1)\) and \({\mathscr{A}} \in \{{\mathscr{B}},\mathcal {F}\}\).

Let \(s_{0},s_{1} \in \mathbb {R}\) and \(\sigma \in \mathbb {R}\) satisfy \(\sigma > \sigma _{s_{0},s_{1},p,\gamma }\). Then for all \(m \in B^{\sigma }_{\infty ,1}(U;{\mathscr{B}}(X))\) and \(f \in {\mathscr{A}}^{s_{0} \vee s_{1}}_{p,q}(U,w^{\partial {\mathscr{O}}}_{\gamma };X)\) there is the estimate

$$ \begin{array}{@{}rcl@{}} \|{mf}\|_{\mathscr{A}^{s_{1}}_{p,q}(U,w^{\partial\mathscr{O}}_{\gamma};X)} &\lesssim& \|{m}\|_{L_{\infty}(U;\mathcal{B}(X))+B^{-(s_{0}-s_{1})_{+}}_{\infty,1}(U;\mathcal{B}(X))} \|{f}\|_{\mathscr{A}^{s_{0} \vee s_{1}}_{p,q}(U,w^{\partial\mathscr{O}}_{\gamma};X)} \\&&+ \|{m}\|_{B^{\sigma}_{\infty,1}(U;\mathcal{B}(X))} \|{f}\|_{\mathscr{A}^{s_{0}}_{p,q}(U,w^{\partial\mathscr{O}}_{\gamma};X)}. \end{array} $$
(B-1)

Proof

The proof of [62, Lemma 3.1] carries over verbatim to the X-valued setting. β–‘

Remark B.2

In connection to the above lemma, note that

$$ L_{\infty}(U;\mathcal{B}(X)) + B^{-(s_{0}-s_{1})_{+}}_{\infty,1}(U;\mathcal{B}(X)) = \left\{\begin{array}{ll} L_{\infty}(U;\mathcal{B}(X)),& s_{1} \geq s_{0},\\ B^{s_{1}-s_{0}}_{\infty,1}(U;\mathcal{B}(X)), & s_{1} < s_{0}, \end{array}\right. $$
(B-2)

as a consequence of \(B^{0}_{\infty ,1} \hookrightarrow L_{\infty } \hookrightarrow B^{0}_{\infty ,\infty }\) and \(B^{s}_{\infty ,\infty } \hookrightarrow B^{s-\epsilon }_{\infty ,1}\), \(s \in \mathbb {R}\), πœ– > 0. Furthermore,

$$ B^{\sigma}_{\infty,1}(U;\mathcal{B}(X)) \hookrightarrow L_{\infty}(U;\mathcal{B}(X)) + B^{-(s_{0}-s_{1})_{+}}_{\infty,1}(U;\mathcal{B}(X)) $$
(B-3)

as Οƒ > s1 βˆ’ s0 β‰₯βˆ’(s0 βˆ’ s1)+.

Remark B.3

Lemma B.1 has a version for more general weights: \(A_{\infty }\)-weights in case (i) and \([A_{\infty }]'_{p}\)-weights in case (ii). The condition \(\sigma >\sigma _{s_{0},s_{1},p,\gamma }\) then has to be replaced by

$$ \sigma > \max\left\{ \left( \frac{1}{\rho_{w,p}}-1\right)_{+}-s_{0},-\left( \frac{1}{\rho_{w^{\prime}_{p},p^{\prime}}}-1\right)_{+}+s_{1} ,s_{1}-s_{0}\right\}, $$

where \(\rho _{w,p} := \sup \{ r \in (0,1) : w \in A_{p/r}\}\) with the convention that \(\sup \emptyset = \infty \) and \(\frac {1}{\infty }=0\).

Definition B.4

Let \((S,{\mathscr{A}},\mu )\) be a measure space and X a Banach space. Then we define the space \(\mathcal {R}L_{\infty }(S;{\mathscr{B}}(X))\) as the space of all strongly measurable functions \(f\colon S\to {\mathscr{B}}(X)\) such that

$$ \|f\|_{\mathcal{R}L_{\infty}(S;\mathcal{B}(X))}:=\inf_{g}\mathcal{R}\{g(\omega):\omega\in S\}<\infty $$

where the infimum is taken over all strongly measurable \(g\colon S\to {\mathscr{B}}(X)\) such that f = g almost everywhere.

Lemma B.5

Let \({\mathscr{O}}\) be either \(\mathbb {R}^{d}_{+}\) or a \(C^{\infty }\)-domain in \(\mathbb {R}^{d}\) with a compact boundary \(\partial {\mathscr{O}}\), let X be a UMD Banach space, \(U \in \{\mathbb {R}^{d},{\mathscr{O}}\}\), \(p\in (1,\infty )\) and \(w\in A_{p}(\mathbb {R}^{n})\). Let further \(s_{0},s_{1} \in \mathbb {R}\) and \(\sigma \in \mathbb {R}\) satisfy \(\sigma > \max \limits \{-s_{0},s_{1},s_{1}-s_{0}\}\). Then for all \(m \in B^{\sigma }_{\infty ,1}(U;{\mathscr{B}}(X))\) and \(f \in H^{s_{1}\vee s_{0}}_{p}(U,w;X)\) there is the estimate

$$ \|{mf}\|_{H^{s_{1}}_{p}(U,w;X)} \lesssim \|{m}\|_{\mathcal{R}L_{\infty}(U;\mathcal{B}(X))} \|{f}\|_{H^{s_{1}}_{p}(U,w;X)} + \|{m}\|_{B^{\sigma}_{\infty,1}(U;\mathcal{B}(X))} \|{f}\|_{H^{s_{0}}_{p}(U,w;X)}. $$
(B-4)

Proof

It suffices to consider the case \(U=\mathbb {R}^{d}\). We use paraproducts as in [82, Section 4.4] and [72, Section 4.2].

By [72, Lemma 4.4], the paraproduct Ο€1 : (m,f)↦π1(m,f) gives rise to bounded bilinear mapping

$$ {\Pi}_{1}: \mathcal{R}L_{\infty}(\mathbb{R}^{d};\mathcal{B}(X)) \times {H^{s}_{p}}(\mathbb{R}^{d},w;X) \longrightarrow {H^{s}_{p}}(\mathbb{R}^{d},w;X). $$

By a slight modification of [72, Lemma 4.6] (see [62, Lemma 3.1]), for i ∈{2, 3}, the paraproduct Ο€i : (m,f)↦πi(m,f) gives rise to bounded bilinear mapping

$$ {\Pi}_{i}: B^{\sigma}_{\infty,1}(\mathbb{R}^{d};\mathcal{B}(X)) \times F^{s_{0}}_{p,\infty}(\mathbb{R}^{d},w;X) \longrightarrow F^{s_{1}}_{p,1}(\mathbb{R}^{d},w;X) $$

and thus a bounded bilinear mapping

$$ {\Pi}_{i}: B^{\sigma}_{\infty,1}(\mathbb{R}^{d};\mathcal{B}(X)) \times H^{s_{0}}_{p}(\mathbb{R}^{d},w;X) \longrightarrow H^{s_{1}}_{p}(\mathbb{R}^{d},w;X). $$

β–‘

Proposition B.6

Under the conditions of Lemma B.1 with s0 β‰₯ s1, we have the continuous bilinear mapping

$$ B^{\sigma}_{\infty,1}(U;\mathcal{B}(X)) \times \mathscr{A}^{s_{0}}_{p,q}(U,w^{\partial\mathscr{O}}_{\gamma};X) \longrightarrow \mathscr{A}^{s_{1}}_{p,q}(U,w^{\partial\mathscr{O}}_{\gamma},X), (m,f) \mapsto mf. $$
(B-5)

Under the conditions of Lemma B.5 with s0 β‰₯ s1, we have the continuous bilinear mapping

$$ B^{\sigma}_{\infty,1}(U;\mathcal{B}(X)) \times H^{s_{0}}_{p}(U,w;X) \longrightarrow H^{s_{1}}_{p}(U,w,X), (m,f) \mapsto mf. $$
(B-6)

Proof

EquationΒ B-5 is a direct consequence of Lemma B.1. The case s = 0 in Eq.Β B-6 follows from [72, Proposition 3.8]. The case s0 > s1 in Eq.Β B-6 follows from the Ap-version of Eq.Β B-5 (see Remark B.3) as \(\sigma > \sigma _{s_{0}-\epsilon ,s_{1}+\epsilon ,p,w}\) for sufficiently small πœ– > 0. β–‘

Appendix C: Comments on the Localization and Perturbation Procedure

The localization and perturbation arguments are quite technical but standard, let us just say the following. The localization in Theorem 5.3 can be carried out as in [67, Sections 2.3 & 2.4] and [60, Appendix B], where we need to use some of the pointwise estimates from AppendixΒ B as well some of the localization and rectification results for weighted Besov and Triebel-Lizorkin spaces from [62, Section 4] (which extend to the vector-valued situation) in order to perform all the arguments. Furthermore, the localization in Theorem 6.2 can be carried out as in [62, Theorem 9.2]. The results in [62, Section 4] are a generalization of results on the invariance of Besov- and Triebel-Lizorkin spaces under diffeomorphic transformations such as [84, Theorem 4.16] to the weighted anisotropic mixed-norm setting. They lead to the conditions (SO) in Section 5 and (SO)s in Section 6.

We would also like to mention [24] and [25], where the authors treat maximal Lq-Lp-regularity for parabolic boundary value problems on the half-space in which the elliptic operators have top order coefficients in the VMO class in both time and space variables. In their proofs, they do not use localization for the results on VMO coefficients, but they extend some techniques by Krylov as well as Dong and Kim.

While the geometric steps of the localization procedure in our setting are the same as in the standard Lp-setting, there are some differences in what kind of perturbation results we need. The main difference lies in the treatment of the top order perturbation of the differential operator on the domain. More precisely, the following lemma is a useful tool in the localization procedure for our setting.

Lemma C.1

Let E be a Banach space and \(A\colon E\supset D(A)\to E\) a closed linear operator. Suppose that there is a constant C > 0 such that for all Ξ» > 0 and all u ∈ D(A) it holds that

$$ \begin{array}{@{}rcl@{}} \| u\|_{D(A)} + \lambda \|u\|_{E}\leq C \|(\lambda+A) u\|_{E}. \end{array} $$
(C-1)

Let \(\||{ \cdot }\||\colon E\to [0,\infty )\) a mapping and πœƒ ∈ (0, 1) such that

$$ \begin{array}{@{}rcl@{}} \||{u}\|| \leq \|u\|_{E}^{1-\theta}\|u\|^{\theta}_{D(A)} \end{array} $$
(C-2)

holds for all u ∈ D(A). Let further P : D(A) β†’ E and suppose that there are constants \(\delta , C^{\prime }\in (0,\infty )\) such that

$$ \begin{array}{@{}rcl@{}} \|P(u)\|_{E}\leq \delta\|u\|_{D(A)}+C^{\prime}\||{u}\|| \end{array} $$
(C-3)

for all u ∈ D(A). Then there is \(\lambda _{0}\in (0,\infty )\) only depending on \(\delta ,C^{\prime }\) and πœƒ such that for all Ξ» β‰₯ Ξ»0 and all u ∈ D(A) we have the estimate

$$ \begin{array}{@{}rcl@{}} \|P(u)\|_{E}\leq 2\delta C\|(\lambda+A)u\|_{E}. \end{array} $$
(C-4)

Proof

For u ∈ D(A) we have that

$$ \begin{array}{@{}rcl@{}} \|P(u)\|_{E}&\leq& \delta\|u\|_{D(A)}+C^{\prime}\||{u}\|| \leq \delta\|u\|_{D(A)}+C^{\prime} \|u\|_{E}^{1-\theta}\|u\|^{\theta}_{D(A)} \\ &\leq& 2\delta\|u\|_{D(A)} +\delta C_{\delta} \|u\|_{E} \end{array} $$

with \(C_{\delta }:=(\frac {\delta }{C^{\prime }\theta })^{\theta /(1-\theta )}(1-\theta )\). Here, we used Young’s inequality with the Peter-Paul trick. Using Eq.Β C-1 with Ξ» β‰₯ CΞ΄/2, we can further estimate

$$ \begin{array}{@{}rcl@{}} \|P(u)\|_{E}&\leq 2\delta C \| (\lambda+A)u\|_{E} \end{array} $$

so that Ξ»0 = CΞ΄/2 is the asserted parameter. β–‘

If one wants to apply Lemma C.1 for a localization procedure, then one can treat the top order perturbation as follows: Suppose that the differential operator has the form \(1+{\sum }_{|\alpha |=2m} (a_{\alpha }+p_{\alpha }(x))D^{\alpha }\) with pΞ± being small in a certain norm. The mapping P in Lemma C.1 can be chosen to be \(P(u)(x)={\sum }_{|\alpha |=2m}p_{\alpha }(x)D^{\alpha } u(x)\) and A can be chosen to be the realization of \(1+{\sum }_{|\alpha |=2m}a_{\alpha }D^{\alpha }\) in \(\mathbb {E}\) with vanishing boundary conditions. Now one can use Lemma B.1 in combination with Remark B.2 in the Besov-Triebel-Lizorkin case and Lemma B.5 in the Bessel potential case to obtain an estimate of the form Eq.Β C-3. In order to do this for example in the parabolic case, one chooses πœ– ∈ (0, 2m) such that Οƒ > Οƒs,p,Ξ³ + πœ– β‰₯ Οƒsβˆ’πœ–,πœ–,p,Ξ³. Then one chooses s0 = s βˆ’ πœ– and s1 = s. These choices lead to the estimate

$$ \|p_{\alpha}D^{\alpha}u\|_{\mathbb{E}}\lesssim \|p_{\alpha}\|_{L_{\infty}} \|u\|_{\mathbb{E}^{2m}}+\|p_{\alpha}\|_{BUC^{\sigma}}\|u\|_{\mathbb{E}^{2m-\epsilon}}\quad(|\alpha|=2m) $$

in the Besov and Triebel-Lizorkin cases and

$$ \|p_{\alpha}D^{\alpha}u\|_{\mathbb{E}}\lesssim \|p_{\alpha}\|_{\mathcal{R}L_{\infty}} \|u\|_{\mathbb{E}^{2m}}+\|p_{\alpha}\|_{BUC^{\sigma}}\|u\|_{\mathbb{E}^{2m-\epsilon}}\quad(|\alpha|=2m) $$

in the Bessel potential case. It holds that \(\|\cdot \|_{D(A)}\eqsim \|\cdot \|_{\mathbb {E}^{2m}}\) on \(D(A)\subset \mathbb {E}^{2m}\). Hence, if \(\theta =1-\frac {\epsilon }{2m}\) and \(E=\mathbb {E}\), then these estimates would correspond to Eq.Β C-3 in Lemma C.1 where \(\cdot =M\|\cdot \|_{\mathbb {E}^{2m-\epsilon }}\) for a suitable constant M > 0 such that Eq.Β C-2 holds. Note that Eq.Β C-1 follows from the sectoriality of A. Therefore, if pΞ± is small in \(L_{\infty }\) or \(\mathcal {R}L_{\infty }\)-norm, respectively, then Lemma C.1 shows that P is just a small perturbation of a suitable shift of the operator A.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hummel, F., Lindemulder, N. Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces. Potential Anal 57, 601–669 (2022). https://doi.org/10.1007/s11118-021-09929-w

Download citation

  • Received: 17 December 2019

  • Accepted: 06 May 2021

  • Published: 02 July 2021

  • Issue Date: December 2022

  • DOI: https://doi.org/10.1007/s11118-021-09929-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anistropic
  • Bessel potential
  • Boundary value problem
  • Lopatinskii-Shapiro
  • Maximal regularity
  • Mixed-norm
  • Poisson operator
  • Smoothing
  • Sobolev
  • Triebel-Lizorkin
  • UMD
  • Vector-valued
  • Weight

Mathematics Subject Classification (2010)

  • Primary: 35K52
  • 46E35; Secondary: 46E40
  • 47G30
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.