Skip to main content
Log in

Second order PDEs with Dirichlet white noise boundary conditions

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we study inhomogeneous Dirichlet boundary problems associated to the Poisson and heat equations on bounded and unbounded domains with smooth boundary and random boundary data. The main novelty of this work is a convenient framework for the analysis of equations excited by the white in time and/or space noise on the boundary. Our approach allows us to show the existence and uniqueness of weak solutions in the space of distributions. We also prove that the solutions can be identified as smooth functions inside the domain, and finally, the rate of their blow up at the boundary is estimated. A large class of noises including Wiener and fractional Wiener space-time white noise, homogeneous noise and Lévy noise are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alòs E., Bonaccorsi S.: Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 465–481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alòs E., Bonaccorsi S.: Stochastic partial differential equations with Dirichlet white-noise boundary conditions. Ann. Inst. H. Poincaré Probab. Statist. 38, 125–154 (2002)

    Article  MATH  Google Scholar 

  3. A.V. Balakrishnan, Applied Functional Analysis, Springer-Verlag, Berlin Heidenberg New York, 1981.

  4. Bricmont J., Kupiainen A.: Towards a derivation of Fouriers law for coupled annharmonic oscillators. Commun. Math. Phys. 274, 555–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDEs driven by a homogeneous Wiener process, Studia Math. 137 (1999), 261–299.

  6. Z. Brzeźniak and S. Peszat, Hyperbolic equations with random boundary conditions, in Recent Development in Stochastic Dynamics and Stochastic Analysis, (J. Duan, S. Luo and C. Wang, eds.) World Scientific, 2010, pp. 1–22.

  7. A. Bensoussan, G. Da Prato, M.C. Delfour, and S.K. Mitter, Representation and Control of Infinite Dimensional Systems (Systems & Control: Foundations & Applications), Birkhuser, Boston, 2006.

  8. Chueshov I., Schmalfuss B.: Parabolic stochastic partial differential equations with dynamical boundary conditions. Differential Integral Equations 17, 751–780 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Chueshov I., Schmalfuss B.: Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete Contin. Dyn. Syst. 18, 315–338 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Dalang and O. Lévêque, Second order linear hyperbolic SPDE’s driven by isotropic Gaussian noise on a sphere, Ann. Probab. 32 (2004), 1068–1099.

  11. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992.

  12. G. Da Prato and J. Zabczyk, Evolution equations with white-noise boundary conditions, Stochastics Stochastics Rep. 42 (1993), 167–182.

  13. G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996.

  14. J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci. 1 (2003), 133–151.

  15. Eidel’man S.D., Ivasishen S.D.: Investigations of the Green matrix for a homogeneous parabolic boundary value problem. Trans. Moscow Math. Soc. 23, 179–242 (1970)

    Google Scholar 

  16. Fabbri G., Goldys B.: An LQ problem for the heat equation on the halfline with Dirichlet boundary control and noise. SIAM J. Control Optim. 48, 1473–1488 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Freidlin and R. Sowers, Central limit results for a reaction-diffusion equation with fast-oscillating boundary perturbations, Stochastic partial differential equations and their applications (Charlotte, NC, 1991), pp. 101–112, Lecture Notes in Control and Inform. Sci., 176, Springer, Berlin, 1992.

  18. K. Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, SIAM, Philadelphia, 1984.

  19. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations Volume 1: Abstract Parabolic Systems, Cambridge Univ. Press, Cambridge, 2000.

  20. O. Lévêque, Hyperbolic SPDE’s driven by a boundary noise, PhD Thesis 2452 (2001), EPF Lausanne.

  21. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin Heidenberg New York, 1972.

  22. Maslowski B.: Stability of semilinear equations with boundary and pointwise noise. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 55–93 (1995)

    MATH  MathSciNet  Google Scholar 

  23. Mora X.: Semilinear parabolic problems define semiflows on C k spaces. Trans. Amer.Math. Soc. 278, 21–55 (1983)

    MATH  MathSciNet  Google Scholar 

  24. Nualart D., Rascanu A.: Differential equations driven by fractional Brownian motion. Collectanea Mathematica 53, 55–81 (2001)

    MathSciNet  Google Scholar 

  25. S. Peszat, SPDEs driven by a homogeneous Wiener process, SPDE and Applications (Levico, T. 2000, G. Da Prato and L. Tubaro, eds.), Marcel Dekker, New York, 2001, pp. 417–427.

  26. Peszat S., Tindel S.: Stochastic heat and wave equations on a Lie group. Stochastic Anal. Appl. 28, 662–695 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Processes Appl. 72 (1997), 187–204.

  28. S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations Driven by Lévy Processes, Cambridge Univ. Press, Cambridge, 2007.

  29. Solonnikov V.A.: Green matrices for parabolic boundary value problems. Sem. Math. V.A. Stieklov Math. Inst. Leningrad 14, 132–150 (1969)

    Google Scholar 

  30. Sowers R.B.: Multidimensional reaction-diffusion equations with white noise boundary perturbations. Ann. Probab. 22, 2071–2121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Yosida, Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

  32. J.B. Walsh, An introduction to stochastic partial differential equations, in École d’ été de probabilités de Saint-Flour XIV - 1984, Lecture Notes in Math. 1180, Springer, Berlin New York, 1986, pp. 265–439.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzisław Brzeźniak.

Additional information

Szymon Peszat’s Research was supported by Polish National Science Center Grant DEC2013/09/ B/ST1/03658. Ben Goldys Research was supported by the ARC Grant DP120101886. Francesco Russo was partially supported by the ANR Project MASTERIE 2010 BLAN 0121 01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzeźniak, Z., Goldys, B., Peszat, S. et al. Second order PDEs with Dirichlet white noise boundary conditions. J. Evol. Equ. 15, 1–26 (2015). https://doi.org/10.1007/s00028-014-0246-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0246-2

Mathematical Subject Classification

Keywords

Navigation